14. \( \frac{5 x^{2}+10 x}{x+5} \div \frac{x^{2}-4}{x^{2}-25} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify the expression \( \frac{5 x^{2}+10 x}{x+5} \div \frac{x^{2}-4}{x^{2}-25} \), let's first rewrite the division as multiplication by the reciprocal: \[ \frac{5 x^{2}+10 x}{x+5} \cdot \frac{x^{2}-25}{x^{2}-4} \] Now, we can factor the expressions where possible: 1. \( 5x^2 + 10x = 5x(x + 2) \) 2. \( x^2 - 4 = (x - 2)(x + 2) \) (Difference of squares) 3. \( x^2 - 25 = (x - 5)(x + 5) \) (Difference of squares) Now substituting back into our expression, we have: \[ \frac{5x(x + 2)}{x + 5} \cdot \frac{(x - 5)(x + 5)}{(x - 2)(x + 2)} \] Now, we can cancel out \( (x + 2) \) from the numerator and the denominator: \[ \frac{5x}{x + 5} \cdot \frac{(x - 5)(x + 5)}{(x - 2)} \] Next, we can see that \( (x + 5) \) cancels out as well: \[ \frac{5x(x - 5)}{x - 2} \] This gives us the simplified expression: \[ \frac{5x(x - 5)}{x - 2} \] This cannot be simplified further unless you know specific values for \( x \). Thus, the final answer is: \[ \frac{5x(x - 5)}{x - 2} \]