Pregunta
upstudy study bank question image url

a. In a card game, each round you earn either 3 points or 5 points depending on the cards you play. After 5 rounds you have 19 points. Use \( x \) for the number of 3 point rounds and \( y \) for the number of 5 point rounds. Write a system of 2 equations that describes this situation. b. Another system is solved by the point \( (7,10) \). Explain how you can check that this solution is correct.

Ask by Owen Harmon. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. The system of equations is: \[ \begin{cases} x + y = 5 \\ 3x + 5y = 19 \end{cases} \] b. To check if \((7, 10)\) is a solution: - Substitute \( x = 7 \) and \( y = 10 \) into the first equation: \( 7 + 10 = 17 \neq 5 \) → Not valid. - Substitute into the second equation: \( 3(7) + 5(10) = 21 + 50 = 71 \neq 19 \) → Not valid. So, \((7, 10)\) is **not** a solution.

Solución

### a. Writing the System of Equations Let's define the variables: - \( x \) = number of 3-point rounds - \( y \) = number of 5-point rounds Given the information: 1. **Total Rounds:** You played a total of 5 rounds. 2. **Total Points:** You earned a total of 19 points. Using these, we can set up the following two equations: 1. **Total Rounds Equation:** \[ x + y = 5 \] *This equation states that the sum of 3-point rounds and 5-point rounds is equal to 5.* 2. **Total Points Equation:** \[ 3x + 5y = 19 \] *This equation represents the total points earned, where each 3-point round contributes 3 points and each 5-point round contributes 5 points.* **System of Equations:** \[ \begin{cases} x + y = 5 \\ 3x + 5y = 19 \end{cases} \] --- ### b. Verifying the Solution \((7, 10)\) To check whether \((7, 10)\) is a valid solution to the system of equations, follow these steps: 1. **Substitute \( x = 7 \) and \( y = 10 \) into the First Equation:** \[ 7 + 10 = 5 \\ 17 = 5 \quad \text{(This is FALSE)} \] 2. **Substitute \( x = 7 \) and \( y = 10 \) into the Second Equation:** \[ 3(7) + 5(10) = 19 \\ 21 + 50 = 19 \\ 71 = 19 \quad \text{(This is FALSE)} \] Since substituting \((7, 10)\) into both equations does not satisfy either equation, \((7, 10)\) is **not** a solution to the system. **Note:** It's possible that \((7, 10)\) refers to a different system of equations. To verify it correctly: - **Identify the Specific System:** Ensure you know which equations you're testing. - **Substitute the Values:** Plug \( x = 7 \) and \( y = 10 \) into each equation of that system. - **Check for Validity:** Both equations should hold true after substitution. If both equations are satisfied after substitution, then \((7, 10)\) is a valid solution. Otherwise, it is not.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To model the situation, we can create two equations based on the information given. The first equation stems from the total number of rounds, so we have \( x + y = 5 \). The second equation comes from the total points earned, so \( 3x + 5y = 19 \). Together, these two equations help analyze the combination of 3-point and 5-point rounds you played during the game. To check if the solution \( (7,10) \) is correct, substitute \( x = 7 \) and \( y = 10 \) back into both equations. For the first equation, \( 7 + 10 \) should equal \( 5 \), which does not hold true. For the second equation, \( 3(7) + 5(10) \) should equal \( 19 \), but it doesn't make sense since that will be significantly greater than 19. Therefore, \( (7,10) \) cannot be a valid solution for this card game scenario.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad