Apply the formula shown to find the area of the trapezoid. \[ A=\frac{1}{2}\left(b_{1}+b_{2}\right) h \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the area of a trapezoid using the formula \( A=\frac{1}{2}(b_{1}+b_{2}) h \), first identify the lengths of the two bases, \( b_{1} \) and \( b_{2} \), along with the height \( h \). For instance, if \( b_{1} = 5 \) units, \( b_{2} = 7 \) units, and \( h = 4 \) units, plug these values into the formula: \( A=\frac{1}{2}(5+7) \cdot 4 \), which simplifies to \( A=24 \) square units. Trapezoids can be found in various real-world contexts, such as construction and architecture, where they often represent the profile of roofs, bridges, or sections in furniture design. For example, if you're designing a table with a trapezoidal shape, or planning a garden bed with trapezoidal compartments, using the area formula helps ensure you purchase the right amount of materials or space efficiently!