Pregunta
upstudy study bank question image url

3. Construct a triangle \( L M N \), such that \( L M=4 \mathrm{~cm} \) \( M N=5 \mathrm{~cm} \) and \( L N=3 \mathrm{~cm} \).

Ask by Wade Rodriquez. in India
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To construct triangle \( LMN \) with sides \( LM = 4 \) cm, \( MN = 5 \) cm, and \( LN = 3 \) cm, follow these steps: 1. **Draw base \( LM \):** Draw a 4 cm line segment and label the ends \( L \) and \( M \). 2. **Draw circle centered at \( L \) with radius 3 cm:** Using a compass, draw a circle from point \( L \). 3. **Draw circle centered at \( M \) with radius 5 cm:** Using the same compass width, draw another circle from point \( M \). 4. **Find intersection point \( N \):** The two circles will intersect at two points; choose one and label it \( N \). 5. **Complete the triangle:** Draw lines from \( L \) to \( N \) and from \( M \) to \( N \). This will form triangle \( LMN \) with the specified side lengths.

Solución

Sure! Here's a step-by-step guide to constructing triangle \( LMN \) with sides \( LM = 4 \) cm, \( MN = 5 \) cm, and \( LN = 3 \) cm using a compass and straightedge. ### **Materials Needed:** - Ruler - Compass - Pencil - Drawing paper ### **Construction Steps:** 1. **Draw the Base \( LM \):** - **Step 1:** Using the ruler, draw a straight horizontal line segment and label its endpoints as \( L \) and \( M \). - **Step 2:** Ensure that the length of \( LM \) is exactly **4 cm**. ![Step 1-2](https://i.imgur.com/Draw1.png) 2. **Construct a Circle with Center \( L \) and Radius \( LN = 3 \) cm:** - **Step 3:** Place the compass point on point \( L \). - **Step 4:** Adjust the compass to a width of **3 cm**. - **Step 5:** Draw a circle centered at \( L \). This circle represents all possible locations for point \( N \) that are **3 cm** away from \( L \). ![Step 3-5](https://i.imgur.com/Draw2.png) 3. **Construct a Circle with Center \( M \) and Radius \( MN = 5 \) cm:** - **Step 6:** Without changing the compass width, adjust it to **5 cm**. - **Step 7:** Place the compass point on point \( M \). - **Step 8:** Draw a second circle centered at \( M \). This circle represents all possible locations for point \( N \) that are **5 cm** away from \( M \). ![Step 6-8](https://i.imgur.com/Draw3.png) 4. **Find the Intersection Point \( N \):** - **Step 9:** Observe where the two circles intersect. There will be two possible intersection points above and below the line \( LM \). - **Step 10:** Choose one of the intersection points and label it as \( N \). ![Step 9-10](https://i.imgur.com/Draw4.png) 5. **Draw the Triangle \( LMN \):** - **Step 11:** Using the ruler, draw straight lines connecting \( L \) to \( N \) and \( M \) to \( N \). - **Step 12:** Verify the lengths: - \( LN \) should be **3 cm**. - \( MN \) should be **5 cm**. ![Step 11-12](https://i.imgur.com/Draw5.png) ### **Final Triangle:** You should now have triangle \( LMN \) with the specified side lengths: - \( LM = 4 \) cm - \( MN = 5 \) cm - \( LN = 3 \) cm ![Final Triangle](https://i.imgur.com/DrawFinal.png) ### **Visualization:** While I can't provide actual images here, the descriptions above correspond to the typical steps used in geometric constructions. Each step builds upon the previous one to ensure accuracy in creating the desired triangle. **Tips:** - **Precision is key:** Make sure your compass settings are exact to ensure the sides are the correct lengths. - **Label clearly:** Clearly labeling points helps in avoiding confusion, especially when dealing with multiple intersection points. - **Use light pencil strokes:** This allows for easy corrections if needed. If you follow these steps carefully, you should successfully construct the desired triangle \( LMN \) with the given side lengths.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To construct triangle \(LMN\) with sides \(LM = 4 \text{ cm}\), \(MN = 5 \text{ cm}\), and \(LN = 3 \text{ cm}\), start by drawing a line segment \(MN\) that is 5 cm long. Then, use a compass to mark a point at a distance of 4 cm from point \(L\) along a circle centered at \(M\). Similarly, create another circle centered at point \(N\) with a radius of 3 cm. The intersection of both circles will give you point \(L\). Connect the points \(L\), \(M\), and \(N\) to complete your triangle! Did you know that the sum of the lengths of any two sides of a triangle must always be greater than the length of the third side? This is known as the triangle inequality theorem and is crucial for triangle construction. In your case, with side lengths \(4 \text{ cm}\), \(5 \text{ cm}\), and \(3 \text{ cm}\), you can see that \(4 + 3 > 5\), \(4 + 5 > 3\), and \(3 + 5 > 4\), confirming that a triangle can indeed be formed! If you're looking to dive deeper into geometry, exploring the properties of triangles like congruence and similarity can be fascinating. Books like "Geometry for Dummies" or "The Joy of Geometry" provide engaging insights into various geometric concepts, including triangles. Online platforms such as Khan Academy or YouTube also feature a plethora of video tutorials that can help visualize and cement your understanding of triangle properties. Happy learning!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad