(9) \( \quad\left(1-a^{4}\right)\left(1-a^{2}\right)\left(1+a^{2}\right) \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To analyze the expression \( (1-a^4)(1-a^2)(1+a^2) \), we can first simplify it using algebraic identities. Start by breaking it down step by step: 1. Notice that \( (1-a^4) \) can be factored further: \[ 1-a^4 = (1-a^2)(1+a^2) \] So we can rewrite the entire expression as: \[ (1-a^4)(1-a^2)(1+a^2) = ((1-a^2)(1+a^2))(1-a^2)(1+a^2) \] 2. Next, observe that we now have \( (1-a^2)^2(1+a^2)^2 \). So we can simply combine the powers: \[ (1-a^2)^2(1+a^2)^2 = ((1-a^2)(1+a^2))^2 \] 3. The expression \( (1-a^2)(1+a^2) \) simplifies to: \[ 1 - a^4 \] Putting everything together, we simplify it as follows: \[ (1-a^4)^2 \] Thus, the final simplified expression is: \[ \boxed{(1-a^4)^2} \]