Pregunta
Factor by grouping. \[ \begin{array}{l}x^{3}-5 x^{2}+5 x-25 \\ \text { A. } x^{3}-5 x^{2}+5 x-25= \\ \text { B. The polynomial is prime. }\end{array} \]
Ask by Dawson Rodriguez. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The polynomial \( x^{3} - 5x^{2} + 5x - 25 \) can be factored by grouping into \( (x^{2} + 5)(x - 5) \). Therefore, it is not a prime polynomial.
Solución
**A.** To factor the polynomial \( x^{3} - 5x^{2} + 5x - 25 \) by grouping, follow these steps:
1. **Group the terms:**
\[
(x^{3} - 5x^{2}) + (5x - 25)
\]
2. **Factor out the common factors from each group:**
\[
x^{2}(x - 5) + 5(x - 5)
\]
3. **Factor out the common binomial factor \((x - 5)\):**
\[
(x^{2} + 5)(x - 5)
\]
So, the factored form of the polynomial is:
\[
x^{3} - 5x^{2} + 5x - 25 = (x^{2} + 5)(x - 5)
\]
**B.** Since the polynomial can be factored as shown above, it is **not** prime.
Answer:
Problem A Answer
The factored form is (x² + 5) multiplied by (x – 5). Thus,
x³ − 5x² + 5x − 25 = (x² + 5)(x − 5)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To factor by grouping, we first group the terms: \[ (x^3 - 5x^2) + (5x - 25) \] Now, factor out the common factors from each group: \[ x^2(x - 5) + 5(x - 5) \] Next, we can factor out the common binomial factor \((x - 5)\): \[ (x - 5)(x^2 + 5) \] So, \[ x^3 - 5x^2 + 5x - 25 = (x - 5)(x^2 + 5) \] This means that the first option is correct: A. \( x^3 - 5x^2 + 5x - 25 = (x - 5)(x^2 + 5) \). B. The polynomial is not prime; it has been successfully factored!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium