Pregunta
upstudy study bank question image url

Fincing the cficalive annual interest rate of a ioan or Investment Abdul took out a loan for \( \$ 7200 \) that charges an annual interest rate of \( 9.3 \% \), compounded daily. Assume there are 365 days in each year. Answer each part. If necessary, refer to the list of financial formulas. \[ \begin{array}{l}\text { (a) Find the amount owed after one year, assuming no payments are made. } \\ \text { Do not round any intermediate computations, and round your answer to the nearest cent. } \\ \text { (b) Find the effective annual interest rate, expressed as a percentage. } \\ \text { Do not round any intermediate computations, and round your answer to the nearest hundredth } \\ \text { of a percent. } \\ \square \%\end{array} \]

Ask by Santiago Nunez. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After one year, Abdul owes approximately \$7,901.63. The effective annual interest rate is approximately 9.74%.

Solución

To find the amount owed after one year, assuming no payments are made, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount owed after \( t \) years, - \( P \) is the principal amount (initial loan amount), - \( r \) is the annual interest rate (in decimal form), - \( n \) is the number of times the interest is compounded per year, - \( t \) is the time in years. Given: - \( P = \$7200 \), - \( r = 9.3\% = 0.093 \), - \( n = 365 \) (compounded daily), - \( t = 1 \) year. Substitute these values into the formula: \[ A = 7200 \left(1 + \frac{0.093}{365}\right)^{365 \cdot 1} \] Now, we can calculate the amount owed after one year. Calculate the value by following steps: - step0: Calculate: \(7200\left(1+\frac{0.093}{365}\right)^{365}\) - step1: Divide the terms: \(7200\left(1+\frac{93}{365000}\right)^{365}\) - step2: Add the numbers: \(7200\left(\frac{365093}{365000}\right)^{365}\) - step3: Simplify: \(7200\times \frac{365093^{365}}{365000^{365}}\) - step4: Rewrite the expression: \(200\times 36\times \frac{365093^{365}}{365000^{365}}\) - step5: Rewrite the expression: \(200\times 36\times \frac{365093^{365}}{200^{365}\times 1825^{365}}\) - step6: Reduce the numbers: \(36\times \frac{365093^{365}}{200^{364}\times 1825^{365}}\) - step7: Rewrite the expression: \(4\times 9\times \frac{365093^{365}}{200^{364}\times 1825^{365}}\) - step8: Rewrite the expression: \(4\times 9\times \frac{365093^{365}}{8^{364}\times 25^{364}\times 1825^{365}}\) - step9: Rewrite the expression: \(2^{2}\times 9\times \frac{365093^{365}}{2^{1092}\times 25^{364}\times 1825^{365}}\) - step10: Reduce the numbers: \(9\times \frac{365093^{365}}{2^{1090}\times 25^{364}\times 1825^{365}}\) - step11: Multiply the fractions: \(\frac{9\times 365093^{365}}{2^{1090}\times 25^{364}\times 1825^{365}}\) The amount owed after one year, assuming no payments are made, is approximately $7901.63. Now, to find the effective annual interest rate, we can use the formula: \[ \text{Effective Annual Interest Rate} = \left(1 + \frac{r}{n}\right)^n - 1 \] Substitute the given values into the formula: \[ \text{Effective Annual Interest Rate} = \left(1 + \frac{0.093}{365}\right)^{365} - 1 \] Now, we can calculate the effective annual interest rate. Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{0.093}{365}\right)^{365}-1\) - step1: Divide the terms: \(\left(1+\frac{93}{365000}\right)^{365}-1\) - step2: Add the numbers: \(\left(\frac{365093}{365000}\right)^{365}-1\) - step3: Rewrite the expression: \(\frac{365093^{365}}{365000^{365}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{365093^{365}}{365000^{365}}-\frac{365000^{365}}{365000^{365}}\) - step5: Transform the expression: \(\frac{365093^{365}-365000^{365}}{365000^{365}}\) The effective annual interest rate is approximately 9.74%. Therefore, the answers are: (a) The amount owed after one year is approximately $7901.63. (b) The effective annual interest rate is approximately 9.74%.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the amount owed after one year and the effective annual interest rate for Abdul's loan, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount owed, - \( P \) is the principal amount (initial loan), - \( r \) is the annual interest rate (as a decimal), - \( n \) is the number of times interest is compounded per year, - \( t \) is the number of years. ### (a) Find the amount owed after one year: Using the values provided: - \( P = 7200 \) - \( r = 0.093 \) (9.3% as a decimal) - \( n = 365 \) - \( t = 1 \) Plugging these values into the formula: \[ A = 7200 \left(1 + \frac{0.093}{365}\right)^{365 \cdot 1} \] Calculating the values: \[ A = 7200 \left(1 + 0.00025479\right)^{365} \] \[ A = 7200 \left(1.097126\right) \] \[ A \approx 7894.71 \] So, the amount owed after one year, rounded to the nearest cent, is **$7894.71**. ### (b) Find the effective annual interest rate: The effective annual interest rate (EAR) can be calculated with the formula: \[ EAR = \left(1 + \frac{r}{n}\right)^{n} - 1 \] For this case: \[ EAR = \left(1 + \frac{0.093}{365}\right)^{365} - 1 \] Calculating the values: \[ EAR = \left(1.00025479\right)^{365} - 1 \] \[ EAR \approx 0.097126 \] To express this as a percentage: \[ EAR \approx 9.71\% \] Thus, the effective annual interest rate is **9.71%**.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad