Pregunta

Describe how the graph of the radical function changes when transformed to .

Ask by Burgess Clark. in South Africa
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The graph of is shifted 4 units to the right and 2 units up to become .

Solución

To understand how the graph of the radical function changes when transformed to , let’s break down the transformations step by step.

1. Start with the Basic Function:

  • Graph Characteristics:
    • Domain:
    • Range:
    • Key Point: Starts at the origin and increases to the right.

2. Horizontal Shift (Inside the Square Root):

  • Transformation: The expression inside the square root indicates a horizontal shift.
  • Direction & Magnitude: Shifts the graph 4 units to the right.
  • New Domain:
  • New Key Point: The starting point moves from to .
Horizontal Shift
Graph of : Shifted 4 units to the right.

3. Vertical Shift (Outside the Square Root):

  • Transformation: The outside the square root indicates a vertical shift.
  • Direction & Magnitude: Shifts the graph 2 units upward.
  • New Range: Since has a range of , adding 2 shifts the range to .
  • New Key Point: The starting point moves from to .
Vertical Shift
Graph of : Shifted 4 units to the right and 2 units upward.

4. Summary of Transformations:

  • Horizontal Shift: 4 units to the right.
  • Vertical Shift: 2 units upward.

5. Final Graph Characteristics of :

  • Domain:
  • Range:
  • Key Point: Starts at and increases to the right.

6. Visual Comparison:

  • Original Function :
    Original Function
  • Transformed Function :
    Transformed Function

7. Real-World Interpretation:

Imagine the square root function as the shape of a curve representing some real-world relationship (like the speed of a car increasing over time). Shifting it right by 4 units could represent a delay in the reaction time, and shifting it up by 2 units could indicate an initial boost or offset in the starting condition.

In Conclusion:
When transforming to , the graph undergoes two key transformations:
  1. Shifts 4 units to the right, altering the starting point horizontally.
  2. Shifts 2 units upward, raising the entire graph vertically.
These transformations adjust both the position and the range of the original radical function, providing a new location and starting point for .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The transformation from to involves two key changes: a horizontal shift and a vertical shift. The term indicates that the graph of moves 4 units to the right, shifting the starting point from (0, 0) to (4, 0). The addition of 2 then shifts the entire graph upward by 2 units, bringing the new starting point to (4, 2).
Visualizing these transformations helps! Picture the original graph of , which resembles half of a sideways parabola beginning at the origin. After the transformations for , the curve now starts at (4, 2) and continues to rise, maintaining its characteristic shape but offset from the original location. It’s like taking a cozy chair (the graph of ) and moving it to a sunnier spot in the room (the transformation), making it even more inviting!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad