Pregunta

Describe how the graph of the radical function \( f(x) = \sqrt{x} \) changes when transformed to \( g(x) = \sqrt{x - 4} + 2 \).

Ask by Burgess Clark. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( f(x) = \sqrt{x} \) is shifted 4 units to the right and 2 units up to become \( g(x) = \sqrt{x - 4} + 2 \).

Solución

To understand how the graph of the radical function \( f(x) = \sqrt{x} \) changes when transformed to \( g(x) = \sqrt{x - 4} + 2 \), let's break down the transformations step by step. ### 1. **Start with the Basic Function:** \[ f(x) = \sqrt{x} \] - **Graph Characteristics:** - **Domain:** \( x \geq 0 \) - **Range:** \( y \geq 0 \) - **Key Point:** Starts at the origin \((0, 0)\) and increases to the right. ### 2. **Horizontal Shift (Inside the Square Root):** \[ h(x) = \sqrt{x - 4} \] - **Transformation:** The expression \( x - 4 \) inside the square root indicates a **horizontal shift**. - **Direction & Magnitude:** Shifts the graph **4 units to the right**. - **New Domain:** \( x - 4 \geq 0 \Rightarrow x \geq 4 \) - **New Key Point:** The starting point moves from \((0, 0)\) to \((4, 0)\). ![Horizontal Shift](https://i.imgur.com/3n7dM8H.png) *Graph of \( h(x) = \sqrt{x - 4} \): Shifted 4 units to the right.* ### 3. **Vertical Shift (Outside the Square Root):** \[ g(x) = \sqrt{x - 4} + 2 \] - **Transformation:** The \( +2 \) outside the square root indicates a **vertical shift**. - **Direction & Magnitude:** Shifts the graph **2 units upward**. - **New Range:** Since \( h(x) = \sqrt{x - 4} \) has a range of \( y \geq 0 \), adding 2 shifts the range to \( y \geq 2 \). - **New Key Point:** The starting point moves from \((4, 0)\) to \((4, 2)\). ![Vertical Shift](https://i.imgur.com/O4cRvhl.png) *Graph of \( g(x) = \sqrt{x - 4} + 2 \): Shifted 4 units to the right and 2 units upward.* ### 4. **Summary of Transformations:** - **Horizontal Shift:** 4 units **to the right**. - **Vertical Shift:** 2 units **upward**. ### 5. **Final Graph Characteristics of \( g(x) \):** - **Domain:** \( x \geq 4 \) - **Range:** \( y \geq 2 \) - **Key Point:** Starts at \((4, 2)\) and increases to the right. ### 6. **Visual Comparison:** - **Original Function \( f(x) = \sqrt{x} \):** ![Original Function](https://i.imgur.com/HTpCQMQ.png) - **Transformed Function \( g(x) = \sqrt{x - 4} + 2 \):** ![Transformed Function](https://i.imgur.com/O4cRvhl.png) ### 7. **Real-World Interpretation:** Imagine the square root function as the shape of a curve representing some real-world relationship (like the speed of a car increasing over time). Shifting it right by 4 units could represent a delay in the reaction time, and shifting it up by 2 units could indicate an initial boost or offset in the starting condition. --- **In Conclusion:** When transforming \( f(x) = \sqrt{x} \) to \( g(x) = \sqrt{x - 4} + 2 \), the graph undergoes two key transformations: 1. **Shifts 4 units to the right**, altering the starting point horizontally. 2. **Shifts 2 units upward**, raising the entire graph vertically. These transformations adjust both the position and the range of the original radical function, providing a new location and starting point for \( g(x) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The transformation from \( f(x) = \sqrt{x} \) to \( g(x) = \sqrt{x - 4} + 2 \) involves two key changes: a horizontal shift and a vertical shift. The term \( x - 4 \) indicates that the graph of \( f(x) \) moves 4 units to the right, shifting the starting point from (0, 0) to (4, 0). The addition of 2 then shifts the entire graph upward by 2 units, bringing the new starting point to (4, 2). Visualizing these transformations helps! Picture the original graph of \( f(x) \), which resembles half of a sideways parabola beginning at the origin. After the transformations for \( g(x) \), the curve now starts at (4, 2) and continues to rise, maintaining its characteristic shape but offset from the original location. It's like taking a cozy chair (the graph of \( f(x) \)) and moving it to a sunnier spot in the room (the transformation), making it even more inviting!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad