Under her cell phone plan, Ximena pays a flat cost of \( \$ 40 \) per month and \( \$ 4 \) per gigabyte. She wants to keep her bill under \( \$ 80 \) per month. Which inequality cati be used to determine \( g \), the maximum number of gigabytes Ximena can use while staying within her budget? Answer \( \begin{array}{l}4+40 g>80 \\ 4+40 g<80 \\ 80<40+4 g \\ \text { Submit Answer }\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To set up the inequality, we can begin with Ximena’s total monthly bill, which is calculated as the flat fee plus the cost per gigabyte. This gives us the equation: \( 40 + 4g \leq 80 \). Rearranging this leads us to find the maximum gigabytes, so the correct inequality that can be used to determine \( g \) is \( 40 + 4g < 80 \). Now, let's clarify why that works. She’s paying \( 40 \) dollars each month just for having the plan, and each gigabyte adds an additional \( 4 \) dollars. By keeping her total at or below \( 80 \) dollars, we set up this inequality, which gives us the flexibility to solve for how much data she can actually use each month while staying frugal!