Find \( A \) in the Equation below \( A=2000\left(1+\frac{0.034}{4}\right)^{4 \cdot 4} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Let's break it down! The equation involves compound interest, where you're looking to find \( A \) after 4 years. The formula is often used in finance, and here, you start with an initial amount of $2000, an interest rate of 3.4% compounded quarterly. Now, let's calculate it step-by-step. First, we simplify the term inside the parentheses: \[ 1 + \frac{0.034}{4} = 1 + 0.0085 = 1.0085 \] Next, we raise this to the power of \( 4 \cdot 4 = 16 \): \[ (1.0085)^{16} \approx 1.148882 \] Now, multiply this by $2000: \[ A \approx 2000 \times 1.148882 \approx 2297.76 \] So, after 4 years, \( A \) is approximately $2297.76. Ready to see your money grow? 🎉💰