Pregunta
\( \left(\frac{7}{2}, 0\right) \) is a solution of \( 2 x+k y-7=0 \) then \( \mathrm{k}= \)
Ask by Hodges Wheeler. in India
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( k \) can be any real number.
Solución
To find the value of \( k \) given that \( \left(\frac{7}{2}, 0\right) \) is a solution of the equation \( 2x + ky - 7 = 0 \), we can substitute \( x = \frac{7}{2} \) and \( y = 0 \) into the equation.
1. Substitute \( x \) and \( y \) into the equation:
\[
2\left(\frac{7}{2}\right) + k(0) - 7 = 0
\]
2. Simplify the equation:
\[
7 + 0 - 7 = 0
\]
This simplifies to:
\[
0 = 0
\]
Since the equation holds true for any value of \( k \) when \( y = 0 \), we can conclude that \( k \) can be any real number.
Thus, the value of \( k \) is not uniquely determined by the given information.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the value of \( k \), we will substitute the solution \( \left(\frac{7}{2}, 0\right) \) into the equation \( 2x + ky - 7 = 0 \). Substituting \( x = \frac{7}{2} \) and \( y = 0 \): \[ 2 \left(\frac{7}{2}\right) + k(0) - 7 = 0 \] This simplifies to: \[ 7 - 7 = 0 \] Since this holds true for any \( k \), we deduce that \( k \) can be any real number. Thus, there is no unique value for \( k \) based on this equation alone.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium