Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 14 and standard deviation 8 What is the probability that \( X \) is between 29 and \( 87 ? \) Write your answer as a decimal rounded to the nearest thousandth.

Ask by Mills Nguyen. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 29 and 87 is approximately 0.031.

Solución

To find the probability that a normally distributed random variable \( X \) is between two values, we can use the cumulative distribution function (CDF) of the normal distribution. Given: - Mean (\( \mu \)) = 14 - Standard deviation (\( \sigma \)) = 8 - We want to find \( P(29 < X < 87) \). We can calculate this probability using the following steps: 1. **Standardize the values**: Convert the values 29 and 87 to their corresponding z-scores using the formula: \[ z = \frac{x - \mu}{\sigma} \] 2. **Calculate the z-scores**: - For \( x = 29 \): \[ z_1 = \frac{29 - 14}{8} \] - For \( x = 87 \): \[ z_2 = \frac{87 - 14}{8} \] 3. **Find the probabilities**: Use the z-scores to find the probabilities from the standard normal distribution table or a calculator. 4. **Calculate the probability**: The probability that \( X \) is between 29 and 87 is given by: \[ P(29 < X < 87) = P(Z < z_2) - P(Z < z_1) \] Now, let's perform the calculations step by step. ### Step 1: Calculate the z-scores Calculating \( z_1 \) and \( z_2 \): \[ z_1 = \frac{29 - 14}{8} \] \[ z_2 = \frac{87 - 14}{8} \] ### Step 2: Calculate the probabilities Now, I will calculate the z-scores and then find the corresponding probabilities. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(87-14\right)}{8}\) - step1: Remove the parentheses: \(\frac{87-14}{8}\) - step2: Subtract the numbers: \(\frac{73}{8}\) Calculate or simplify the expression \( (29 - 14) / 8 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(29-14\right)}{8}\) - step1: Remove the parentheses: \(\frac{29-14}{8}\) - step2: Subtract the numbers: \(\frac{15}{8}\) It seems that I am unable to directly calculate the probabilities from the standard normal distribution. However, I can provide the values based on standard normal distribution tables or common statistical software. ### Step 1: Z-scores Recap - \( z_1 = 1.875 \) - \( z_2 = 9.125 \) ### Step 2: Probability Values Using standard normal distribution tables or calculators: - \( P(Z < 1.875) \approx 0.9693 \) - \( P(Z < 9.125) \approx 1 \) (since this is far into the tail of the distribution) ### Step 3: Calculate the Probability Now we can calculate the probability that \( X \) is between 29 and 87: \[ P(29 < X < 87) = P(Z < 9.125) - P(Z < 1.875) \approx 1 - 0.9693 = 0.0307 \] ### Final Answer The probability that \( X \) is between 29 and 87 is approximately \( 0.031 \) when rounded to the nearest thousandth.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is between 29 and 87 for a normally distributed random variable with a mean \( \mu = 14 \) and standard deviation \( \sigma = 8 \), we need to standardize the values using the Z-score formula: \[ Z = \frac{X - \mu}{\sigma} \] 1. For \( X = 29 \): \[ Z_{29} = \frac{29 - 14}{8} = \frac{15}{8} = 1.875 \] 2. For \( X = 87 \): \[ Z_{87} = \frac{87 - 14}{8} = \frac{73}{8} = 9.125 \] Next, we look up the Z-scores in the standard normal distribution table or use a calculator to find the probabilities: - \( P(Z < 1.875) \) is approximately \( 0.9693 \). - \( P(Z < 9.125) \) is approximately \( 1.0000 \) (since this Z-score is way above the usual range). Now, to find the probability that \( X \) is between 29 and 87, we compute: \[ P(29 < X < 87) = P(Z < 9.125) - P(Z < 1.875) \approx 1.0000 - 0.9693 = 0.0307 \] So, the probability that \( X \) is between 29 and 87 is approximately \( \boxed{0.031} \) when rounded to the nearest thousandth.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad