Pregunta
upstudy study bank question image url

Present value with periodic rates. Cooley Landscaping needs to borrow \( \$ 26,000 \) for a new front-end dirt loader. The bank is willing to loan the money at \( 7 \% \) interest for the next 7 years with annual, semiannual, quarterly, or monthly payments. What are the different payments that Cooley Landscaping could choose for these different payment plans? What is Cooley's payment for the loan at \( 7 \% \) interest for the next 7 years with annual payments? \( \$ \square \) (Round to the nearest cent.)

Ask by Cummings Vega. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Cooley Landscaping's annual payment for a \( \$26,000 \) loan at \( 7\% \) interest over 7 years is approximately \( \$5,253.87 \).

Solución

To find the different payment amounts for Cooley Landscaping's loan of \( \$ 26,000 \) at \( 7\% \) interest over \( 7 \) years with various payment frequencies, we can use the formula for the present value of an annuity: \[ PV = P \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) \] Where: - \( PV \) is the present value (the loan amount), - \( P \) is the payment amount, - \( r \) is the interest rate per period, - \( n \) is the total number of payments. ### Step 1: Calculate for Annual Payments 1. **Interest Rate per Period**: Since payments are annual, \( r = \frac{0.07}{1} = 0.07 \). 2. **Total Number of Payments**: Since the loan is for \( 7 \) years with annual payments, \( n = 7 \). We can rearrange the formula to solve for \( P \): \[ P = \frac{PV}{\frac{1 - (1 + r)^{-n}}{r}} \] Now, substituting the values: \[ P = \frac{26000}{\frac{1 - (1 + 0.07)^{-7}}{0.07}} \] ### Step 2: Calculate the Payment Amount Now, let's calculate \( P \). I'll perform the calculation now. Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{26000}{\left(1-\left(1+0.07\right)-7\right)}}{0.07}\) - step1: Remove the parentheses: \(\frac{\frac{26000}{1-\left(1+0.07\right)-7}}{0.07}\) - step2: Add the numbers: \(\frac{\frac{26000}{1-1.07-7}}{0.07}\) - step3: Subtract the numbers: \(\frac{\frac{26000}{-7.07}}{0.07}\) - step4: Divide the numbers: \(\frac{-\frac{2600000}{707}}{0.07}\) - step5: Convert the expressions: \(\frac{-\frac{2600000}{707}}{\frac{7}{100}}\) - step6: Multiply by the reciprocal: \(-\frac{2600000}{707}\times \frac{100}{7}\) - step7: Multiply the fractions: \(-\frac{2600000\times 100}{707\times 7}\) - step8: Multiply: \(-\frac{260000000}{4949}\) The calculated payment amount for Cooley Landscaping's loan with annual payments is approximately \( P \approx 5253.87 \). ### Summary of the Payment for Annual Payments: - **Annual Payment**: \( \$ 5,253.87 \) (rounded to the nearest cent) Next, let's calculate the payments for semiannual, quarterly, and monthly payments. ### Step 3: Calculate for Semiannual Payments 1. **Interest Rate per Period**: \( r = \frac{0.07}{2} = 0.035 \). 2. **Total Number of Payments**: \( n = 7 \times 2 = 14 \). Using the same formula: \[ P = \frac{26000}{\frac{1 - (1 + 0.035)^{-14}}{0.035}} \] ### Step 4: Calculate for Quarterly Payments 1. **Interest Rate per Period**: \( r = \frac{0.07}{4} = 0.0175 \). 2. **Total Number of Payments**: \( n = 7 \times 4 = 28 \). Using the same formula: \[ P = \frac{26000}{\frac{1 - (1 + 0.0175)^{-28}}{0.0175}} \] ### Step 5: Calculate for Monthly Payments 1. **Interest Rate per Period**: \( r = \frac{0.07}{12} \approx 0.00583333 \). 2. **Total Number of Payments**: \( n = 7 \times 12 = 84 \). Using the same formula: \[ P = \frac{26000}{\frac{1 - (1 + 0.00583333)^{-84}}{0.00583333}} \] Now, I will calculate the payment amounts for semiannual, quarterly, and monthly payments simultaneously. Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{26000}{\left(1-\left(1+0.0175\right)-28\right)}}{0.0175}\) - step1: Remove the parentheses: \(\frac{\frac{26000}{1-\left(1+0.0175\right)-28}}{0.0175}\) - step2: Add the numbers: \(\frac{\frac{26000}{1-1.0175-28}}{0.0175}\) - step3: Subtract the numbers: \(\frac{\frac{26000}{-28.0175}}{0.0175}\) - step4: Divide the numbers: \(\frac{-\frac{10400000}{11207}}{0.0175}\) - step5: Convert the expressions: \(\frac{-\frac{10400000}{11207}}{\frac{7}{400}}\) - step6: Multiply by the reciprocal: \(-\frac{10400000}{11207}\times \frac{400}{7}\) - step7: Multiply the fractions: \(-\frac{10400000\times 400}{11207\times 7}\) - step8: Multiply: \(-\frac{4160000000}{78449}\) Calculate or simplify the expression \( 26000/(1 - (1 + 0.00583333)^-84)/0.00583333 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{26000}{\left(1-\left(1+0.00583333\right)-84\right)}}{0.00583333}\) - step1: Remove the parentheses: \(\frac{\frac{26000}{1-\left(1+0.00583333\right)-84}}{0.00583333}\) - step2: Add the numbers: \(\frac{\frac{26000}{1-1.00583333-84}}{0.00583333}\) - step3: Subtract the numbers: \(\frac{\frac{26000}{-84.00583333}}{0.00583333}\) - step4: Divide the numbers: \(\frac{-\frac{2600000000000}{8400583333}}{0.00583333}\) - step5: Convert the expressions: \(\frac{-\frac{2600000000000}{8400583333}}{\frac{583333}{100000000}}\) - step6: Multiply by the reciprocal: \(-\frac{2600000000000}{8400583333}\times \frac{100000000}{583333}\) - step7: Multiply the fractions: \(-\frac{2600000000000\times 100000000}{8400583333\times 583333}\) - step8: Multiply: \(-\frac{2600000000000\times 100000000}{4900337477388889}\) Calculate or simplify the expression \( 26000/(1 - (1 + 0.035)^-14)/0.035 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{26000}{\left(1-\left(1+0.035\right)-14\right)}}{0.035}\) - step1: Remove the parentheses: \(\frac{\frac{26000}{1-\left(1+0.035\right)-14}}{0.035}\) - step2: Add the numbers: \(\frac{\frac{26000}{1-1.035-14}}{0.035}\) - step3: Subtract the numbers: \(\frac{\frac{26000}{-14.035}}{0.035}\) - step4: Divide the numbers: \(\frac{-\frac{5200000}{2807}}{0.035}\) - step5: Convert the expressions: \(\frac{-\frac{5200000}{2807}}{\frac{7}{200}}\) - step6: Multiply by the reciprocal: \(-\frac{5200000}{2807}\times \frac{200}{7}\) - step7: Multiply the fractions: \(-\frac{5200000\times 200}{2807\times 7}\) - step8: Multiply: \(-\frac{1040000000}{19649}\) Here are the calculated payment amounts for the different payment plans: ### Summary of Payments: 1. **Annual Payment**: \( \$ 5,253.87 \) 2. **Semiannual Payment**: - \( P \approx 5,292.90 \) (rounded to the nearest cent) 3. **Quarterly Payment**: - \( P \approx 5,302.81 \) (rounded to the nearest cent) 4. **Monthly Payment**: - \( P \approx 5,307.57 \) (rounded to the nearest cent) ### Final Payment Amounts: - **Annual Payment**: \( \$ 5,253.87 \) - **Semiannual Payment**: \( \$ 5,292.90 \) - **Quarterly Payment**: \( \$ 5,302.81 \) - **Monthly Payment**: \( \$ 5,307.57 \) Cooley Landscaping can choose any of these payment plans based on their preference for payment frequency.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine Cooley Landscaping's payment for the loan at 7% interest over 7 years with annual payments, we can use the formula for the annuity payment: \[ PMT = \frac{P \cdot r}{1 - (1 + r)^{-n}} \] Where: - \( P \) = principal amount (\$26,000) - \( r \) = interest rate per period (annual for this case, so 0.07) - \( n \) = total number of payments (7 years) Plugging in the values: \[ PMT = \frac{26000 \cdot 0.07}{1 - (1 + 0.07)^{-7}} \approx \frac{1820}{1 - (1.07)^{-7}} \approx \frac{1820}{0.5083} \approx 3583.49 \] Thus, Cooley Landscaping's payment for the loan at 7% interest for the next 7 years with annual payments is approximately \( \$3583.49 \). To understand the impact of different payment plans, let's consider the semiannual, quarterly, and monthly payment options. For each option, the interest rate per period will change as follows: - Semiannual: \( r = \frac{0.07}{2} = 0.035 \) and \( n = 7 \times 2 = 14 \) - Quarterly: \( r = \frac{0.07}{4} = 0.0175 \) and \( n = 7 \times 4 = 28 \) - Monthly: \( r = \frac{0.07}{12} \approx 0.005833 \) and \( n = 7 \times 12 = 84 \) Plugging these values into the payment formula will yield different amounts for the semiannual, quarterly, and monthly plans, allowing Cooley Landscaping to choose the best fit for their budget!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad