Pregunta
upstudy study bank question image url

In a survey, 16 parents were asked how much they spent on their child's last birthday gift. The results were roughly bell-shaped with a mean of \( \$ 35 \) and standard deviation of \( \$ 16 \). Construct a confidence interval at a \( 98 \% \) confidence level to estimate the average amount that parents spent on their child's birthday gift. Give your answers to one decimal place.

Ask by Hamilton Perkins. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At a 98% confidence level, the average amount spent on birthday gifts is between \$24.6 and \$45.4.

Solución

To construct a 98% confidence interval for the average amount parents spent on their child's birthday gift, we'll follow these steps: 1. **Identify the Given Information:** - Sample size (\( n \)) = 16 - Sample mean (\( \bar{x} \)) = \$35 - Sample standard deviation (\( s \)) = \$16 - Confidence level = 98% 2. **Determine the Appropriate Distribution:** - Since the sample size is small (\( n < 30 \)) and the population is roughly bell-shaped, we use the **t-distribution**. - Degrees of freedom (\( df \)) = \( n - 1 = 15 \) 3. **Find the Critical t-Value:** - For a 98% confidence level and \( df = 15 \), the critical t-value (\( t_{0.99,15} \)) is approximately **2.602**. 4. **Calculate the Margin of Error (ME):** \[ ME = t \times \left( \frac{s}{\sqrt{n}} \right) = 2.602 \times \left( \frac{16}{\sqrt{16}} \right) = 2.602 \times 4 = 10.408 \] 5. **Construct the Confidence Interval:** \[ \text{Lower bound} = \bar{x} - ME = 35 - 10.4 = 24.6 \] \[ \text{Upper bound} = \bar{x} + ME = 35 + 10.4 = 45.4 \] 6. **Final Confidence Interval:** \[ \$24.6 \text{ to } \$45.4 \] **Therefore, the 98% confidence interval for the average amount spent is \$24.6 to \$45.4.** **Answer:** At 98 % confidence, the average spent is between \$ 24.6 and \$ 45.4

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To construct a confidence interval for the average amount spent on a child's birthday gift, we will use the formula for a confidence interval based on the sample mean and standard deviation. 1. **Calculate the standard error (SE)**: \[ SE = \frac{s}{\sqrt{n}} = \frac{16}{\sqrt{16}} = \frac{16}{4} = 4 \] 2. **Find the critical value for a 98% confidence level**: The Z-score for a 98% confidence interval (using a Z-table) is approximately 2.33. 3. **Construct the confidence interval**: \[ \text{Margin of Error (ME)} = Z \times SE = 2.33 \times 4 = 9.32 \] \[ \text{Lower limit} = \text{mean} - ME = 35 - 9.32 = 25.68 \] \[ \text{Upper limit} = \text{mean} + ME = 35 + 9.32 = 44.32 \] Thus, the 98% confidence interval for the amount spent on a child's birthday gift is approximately \( (25.7, 44.3) \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad