Pregunta
upstudy study bank question image url

If \( 8 ; 2 x ; 2 y \) forms an arithmetic sequence and \( 2 x ; 2 y ; 36 \) forms a geometric sequence determine the values of \( x \) and \( y \).

Ask by Gough Harris. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The values of \( x \) and \( y \) are: - \( x = 8 \) and \( y = 12 \) - \( x = \frac{1}{2} \) and \( y = -3 \)

Solución

To determine the values of \( x \) and \( y \) given the sequences: 1. **Arithmetic Sequence:** \( 8, 2x, 2y \) 2. **Geometric Sequence:** \( 2x, 2y, 36 \) ### Step 1: Arithmetic Sequence Condition For an arithmetic sequence, the difference between consecutive terms is constant. Thus: \[ 2x - 8 = 2y - 2x \] Simplifying: \[ 4x - 8 = 2y \\ 2y = 4x - 8 \\ y = 2x - 4 \] ### Step 2: Geometric Sequence Condition For a geometric sequence, the ratio between consecutive terms is constant. Thus: \[ \frac{2y}{2x} = \frac{36}{2y} \] Simplifying: \[ \frac{y}{x} = \frac{36}{2y} \\ y^2 = 18x \] ### Step 3: Substitute \( y \) from Arithmetic into Geometric From the arithmetic condition, \( y = 2x - 4 \). Substitute this into \( y^2 = 18x \): \[ (2x - 4)^2 = 18x \\ 4x^2 - 16x + 16 = 18x \\ 4x^2 - 34x + 16 = 0 \\ 2x^2 - 17x + 8 = 0 \] ### Step 4: Solve the Quadratic Equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{17 \pm \sqrt{289 - 64}}{4} \\ x = \frac{17 \pm \sqrt{225}}{4} \\ x = \frac{17 \pm 15}{4} \] This gives two solutions: 1. \( x = \frac{32}{4} = 8 \) 2. \( x = \frac{2}{4} = 0.5 \) ### Step 5: Find Corresponding \( y \) Values Using \( y = 2x - 4 \): 1. If \( x = 8 \): \[ y = 2(8) - 4 = 16 - 4 = 12 \] 2. If \( x = 0.5 \): \[ y = 2(0.5) - 4 = 1 - 4 = -3 \] ### Verification - **First Solution:** \( (x, y) = (8, 12) \) - Arithmetic Sequence: \( 8, 16, 24 \) (Common difference = 8) - Geometric Sequence: \( 16, 24, 36 \) (Common ratio = 1.5) - **Second Solution:** \( (x, y) = (0.5, -3) \) - Arithmetic Sequence: \( 8, 1, -6 \) (Common difference = -7) - Geometric Sequence: \( 1, -6, 36 \) (Common ratio = -6) Both solutions satisfy the conditions for arithmetic and geometric sequences. ### Final Answer There are two possible solutions: • \( x = 8 \) and \( y = 12 \) • \( x = \tfrac{1}{2} \) and \( y = -3 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for \(x\) and \(y\), let's start with the conditions given by the arithmetic sequence and the geometric sequence. 1. For the arithmetic sequence \(8; 2x; 2y\): The middle term is the average of the other two terms, so we set up the equation: \[ 2x = \frac{8 + 2y}{2} \] Multiplying both sides by 2 to eliminate the fraction: \[ 4x = 8 + 2y \quad (1) \] 2. For the geometric sequence \(2x; 2y; 36\): The square of the middle term is equal to the product of the other two terms, so we have: \[ (2y)^2 = 2x \cdot 36 \] Simplifying this gives: \[ 4y^2 = 72x \quad (2) \] Now we can solve the system of equations. From equation (1), rearranging gives: \[ 2y = 4x - 8 \quad \Rightarrow \quad y = 2x - 4 \quad (3) \] Next, we substitute equation (3) into equation (2): \[ 4(2x - 4)^2 = 72x \] Expanding the left side: \[ 4(4x^2 - 16x + 16) = 72x \] This simplifies to: \[ 16x^2 - 64x + 64 = 72x \] Combining like terms: \[ 16x^2 - 136x + 64 = 0 \] Now, we can divide the entire equation by 4: \[ 4x^2 - 34x + 16 = 0 \] Using the quadratic formula where \(a = 4\), \(b = -34\), and \(c = 16\): \[ x = \frac{-(-34) \pm \sqrt{(-34)^2 - 4 \cdot 4 \cdot 16}}{2 \cdot 4} \] Calculating the discriminant: \[ (-34)^2 - 4 \cdot 4 \cdot 16 = 1156 - 256 = 900 \] Taking the square root gives: \[ \sqrt{900} = 30 \] Thus, substituting back into the quadratic formula: \[ x = \frac{34 \pm 30}{8} \] This results in two possible values for \(x\): 1. \(x = \frac{64}{8} = 8\) 2. \(x = \frac{4}{8} = \frac{1}{2}\) Now we find corresponding values for \(y\) using equation (3): 1. If \(x = 8\): \[ y = 2(8) - 4 = 16 - 4 = 12 \] 2. If \(x = \frac{1}{2}\): \[ y = 2\left(\frac{1}{2}\right) - 4 = 1 - 4 = -3 \] Hence, the pairs \((x, y)\) can be either \((8, 12)\) or \(\left(\frac{1}{2}, -3\right)\). The final answers are: \[ (x, y) = (8, 12) \quad \text{or} \quad \left(\frac{1}{2}, -3\right) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad