Pregunta
upstudy study bank question image url

4) A summer camp rewards campers and zounselors with badges. The carmp orders 200 badges. They plan to give 25 badges to counselors. They ordered at least 3 badges for each camper. a. How many campers could be at the camp? Show your work. SOLUTION \( \qquad \) b. Are all of the values on the graph of \( c \leq 58 \) possible solutions? Explain.

Ask by Chen Rowe. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. The camp could have up to 58 campers. b. Yes, all values of \( c \leq 58 \) are possible solutions because they meet the badge distribution requirements.

Solución

To solve the problem, let's break it down step by step. ### Part a: How many campers could be at the camp? 1. **Identify the known conditions:** - Total badges ordered: \( 200 \) - Badges given to counselors: \( 25 \) - Badges for each camper: at least \( 3 \) 2. **Calculate the number of badges available for campers:** \[ \text{Badges for campers} = \text{Total badges} - \text{Badges for counselors} = 200 - 25 = 175 \] 3. **Let \( c \) be the number of campers. Since each camper receives at least \( 3 \) badges, we can express this as:** \[ 3c \leq 175 \] 4. **Now, solve for \( c \):** \[ c \leq \frac{175}{3} \] \[ c \leq 58.33 \] 5. **Since the number of campers must be a whole number, the maximum number of campers is:** \[ c \leq 58 \] Thus, the maximum number of campers that could be at the camp is \( 58 \). ### Part b: Are all of the values on the graph of \( c \leq 58 \) possible solutions? Explain. The inequality \( c \leq 58 \) indicates that any whole number value of \( c \) from \( 0 \) to \( 58 \) is a possible solution. 1. **Possible values for \( c \):** - The values can be \( 0, 1, 2, \ldots, 58 \). 2. **Explanation:** - Each of these values represents a scenario where the campers receive at least \( 3 \) badges each, and the total number of badges does not exceed \( 200 \). - For example, if \( c = 58 \), then the total badges used would be \( 25 + 3 \times 58 = 25 + 174 = 199 \), which is within the limit. - If \( c = 0 \), then all badges go to counselors, which is also valid. Therefore, all values on the graph of \( c \leq 58 \) are indeed possible solutions, as they all satisfy the condition of not exceeding the total number of badges available.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine how many campers \( c \) can be at the camp, we start with the total number of ordered badges, which is 200. If 25 badges are given to counselors, we subtract that from the total: \[ 200 - 25 = 175 \] This means there are 175 badges available for campers. Since each camper receives at least 3 badges, we can set up the inequality: \[ 3c \leq 175 \] Now, we solve for \( c \): \[ c \leq \frac{175}{3} \] Calculating this gives: \[ c \leq 58.33 \] Since the number of campers must be a whole number, the maximum number of campers could be 58. For part b, not all values on the graph of \( c \leq 58 \) are possible solutions, because \( c \) must be a non-negative integer. While the graph extends infinitely to the left (allowing negative values), only whole numbers from 0 to 58 are valid solutions in this context, as you can’t have a negative or fractional number of campers!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad