Pregunta
upstudy study bank question image url

You deposit \( \$ 1000 \) in an account that pays \( 7 \% \) interest compounded semiannually. After 2 years, the interest rate is increased to \( 7.32 \% \) compounded quarterly. What will be the value of the account after a total of 4 years? i) Click the icon to view some finance formulas. The value of the account will be \( \$ \square \). (Round to the nearest dollar as needed.)

Ask by Davey Mccarthy. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 4 years, the account will be worth \$1,327.

Solución

To determine the future value of your account after a total of 4 years with the given interest rates and compounding periods, we'll break the calculation into two parts: 1. **First 2 Years:** - **Principal (\( P \))**: \$1,000 - **Annual Interest Rate (\( r \))**: 7% or 0.07 - **Compounding Frequency (\( n \))**: Semiannually (\( n = 2 \)) - **Time (\( t \))**: 2 years The formula for compound interest is: \[ \text{Future Value} = P \left(1 + \frac{r}{n}\right)^{nt} \] Plugging in the values: \[ \text{Future Value after 2 years} = 1000 \times \left(1 + \frac{0.07}{2}\right)^{2 \times 2} = 1000 \times (1.035)^4 \approx 1000 \times 1.1475 = \$1,147.50 \] 2. **Next 2 Years:** - **New Principal (\( P \))**: \$1,147.50 (from the first 2 years) - **New Annual Interest Rate (\( r \))**: 7.32% or 0.0732 - **Compounding Frequency (\( n \))**: Quarterly (\( n = 4 \)) - **Time (\( t \))**: 2 years Using the compound interest formula again: \[ \text{Future Value after 4 years} = 1147.50 \times \left(1 + \frac{0.0732}{4}\right)^{4 \times 2} = 1147.50 \times (1.0183)^8 \approx 1147.50 \times 1.1562 = \$1,327 \] **Final Answer:** The value of the account after 4 years will be **\$1,327**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for the value of the account after 4 years, let's break it down: 1. For the first 2 years at 7% interest compounded semiannually: - The formula for compound interest is \( A = P(1 + \frac{r}{n})^{nt} \) where: - \( P = 1000 \) (initial deposit), - \( r = 0.07 \) (annual interest rate), - \( n = 2 \) (number of times interest is compounded per year), - \( t = 2 \) (years). - Calculating: \( A = 1000(1 + \frac{0.07}{2})^{2 \times 2} = 1000(1 + 0.035)^{4} = 1000(1.035)^{4} \approx 1000 \times 1.148882 \approx 1148.88 \). 2. For the next 2 years at 7.32% compounded quarterly: - Using the same formula with \( P \) now being the new amount (\$1148.88), \( r = 0.0732 \), \( n = 4 \), and \( t = 2 \): - Calculating: \( A = 1148.88(1 + \frac{0.0732}{4})^{4 \times 2} = 1148.88(1 + 0.0183)^{8} = 1148.88(1.0183)^{8} \approx 1148.88 \times 1.151331 \approx 1320.03 \). Rounding to the nearest dollar, the value of the account after a total of 4 years will be \( \$1320 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad