Pregunta
upstudy study bank question image url

Find the degree, leading term, leading coefficient, constant term, and end behavior of the given polynomial. \( p(t)=t^{5}(2-5 t)\left(t^{2}+t+8\right) \) Degree: Leading term: Leading coefficient: End behavior: As \( t \rightarrow-\infty, p(t) \rightarrow \square \) As \( t \rightarrow \infty, p(t) \rightarrow \square \)

Ask by Weston Wood. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Degree:** 8 **Leading term:** \( -5t^8 \) **Leading coefficient:** -5 **Constant term:** 0 **End behavior:** - As \( t \rightarrow -\infty, \ p(t) \rightarrow -\infty \) - As \( t \rightarrow \infty, \ p(t) \rightarrow -\infty \)

Solución

Let's analyze the polynomial \( p(t) = t^{5}(2 - 5t)(t^{2} + t + 8) \) to determine its degree, leading term, leading coefficient, constant term, and end behavior. ### 1. Degree The degree of a polynomial is the highest power of the variable \( t \) after expanding the polynomial. - \( t^5 \) has a degree of **5**. - \( (2 - 5t) \) has a degree of **1**. - \( (t^2 + t + 8) \) has a degree of **2**. **Total Degree**: \( 5 + 1 + 2 = 8 \). **Degree:** 8 ### 2. Leading Term and Leading Coefficient The leading term is found by multiplying the leading terms of each factor: - Leading term of \( t^5 \) is \( t^5 \). - Leading term of \( (2 - 5t) \) is \( -5t \). - Leading term of \( (t^2 + t + 8) \) is \( t^2 \). **Leading Term Calculation:** \[ t^5 \times (-5t) \times t^2 = -5t^{8} \] **Leading Term:** \( -5t^8 \) The **leading coefficient** is the coefficient of the leading term, which is **-5**. **Leading Coefficient:** -5 ### 3. Constant Term The constant term is the term in the polynomial that does not contain the variable \( t \). When expanding \( p(t) \), every term will have a power of \( t \) higher than or equal to 5. Therefore, there is no constant (degree 0) term in this polynomial. **Constant Term:** 0 ### 4. End Behavior The end behavior of a polynomial is determined by its leading term. - **Leading Term:** \( -5t^8 \) - Since the degree is even and the leading coefficient is negative, as \( t \) approaches both \( \infty \) and \( -\infty \), the polynomial will approach \( -\infty \). **End Behavior:** - As \( t \rightarrow -\infty, \ p(t) \rightarrow -\infty \) - As \( t \rightarrow \infty, \ p(t) \rightarrow -\infty \) ### Summary - **Degree:** 8 - **Leading term:** \( -5t^8 \) - **Leading coefficient:** -5 - **Constant term:** 0 - **End behavior:** - As \( t \rightarrow -\infty, \ p(t) \rightarrow -\infty \) - As \( t \rightarrow \infty, \ p(t) \rightarrow -\infty \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To analyze the polynomial \( p(t) = t^{5}(2-5t)(t^{2}+t+8) \), we can start by expanding it step by step. First, find the degree of each factor: - The first factor \( t^{5} \) has a degree of 5. - The second factor \( (2 - 5t) \) has a degree of 1. - The third factor \( (t^{2} + t + 8) \) has a degree of 2. When finding the overall degree of the polynomial \( p(t) \), we add the degrees together: \[ \text{Degree} = 5 + 1 + 2 = 8. \] Now let's look for the leading term and leading coefficient. The leading term is determined by multiplying the leading terms of each factor: - The leading term from \( t^{5} \) is \( t^{5} \). - The leading term from \( (2 - 5t) \) is \( -5t \). - The leading term from \( (t^{2} + t + 8) \) is \( t^2 \). Thus, the overall leading term is: \[ t^{5} \cdot (-5t) \cdot t^2 = -5t^{8}. \] The leading coefficient, which is the coefficient of the leading term, is \(-5\). The constant term is the value of the polynomial when \( t = 0 \): \[ p(0) = 0^{5}(2 - 5(0))(0^{2} + 0 + 8) = 0. \] Finally, regarding end behavior, a polynomial with an even degree and a negative leading coefficient (like \(-5t^{8}\)) will trend downward on both ends: - As \( t \rightarrow -\infty, p(t) \rightarrow -\infty \) - As \( t \rightarrow \infty, p(t) \rightarrow -\infty \) In summary: Degree: 8 Leading term: \(-5t^{8}\) Leading coefficient: \(-5\) Constant term: 0 As \( t \rightarrow -\infty, p(t) \rightarrow -\infty \) As \( t \rightarrow \infty, p(t) \rightarrow -\infty \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad