Simplify the Sollowing D \( \sin \left(\theta-45^{\circ}\right)+\sin \left(\theta+45^{\circ}\right. \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( D \sin \left(\theta - 45^{\circ}\right) + \sin \left(\theta + 45^{\circ}\right) \), we can use the sine addition and subtraction formulas. First, recall the formulas: - \( \sin(A - B) = \sin A \cos B - \cos A \sin B \) - \( \sin(A + B) = \sin A \cos B + \cos A \sin B \) Applying these to our problem: 1. For \( \sin(\theta - 45^{\circ}) \): \[ \sin(\theta - 45^{\circ}) = \sin \theta \cos 45^{\circ} - \cos \theta \sin 45^{\circ} = \sin \theta \cdot \frac{\sqrt{2}}{2} - \cos \theta \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\sin \theta - \cos \theta) \] 2. For \( \sin(\theta + 45^{\circ}) \): \[ \sin(\theta + 45^{\circ}) = \sin \theta \cos 45^{\circ} + \cos \theta \sin 45^{\circ} = \sin \theta \cdot \frac{\sqrt{2}}{2} + \cos \theta \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} (\sin \theta + \cos \theta) \] Now substituting these back into the original expression: \[ D \sin(\theta - 45^{\circ}) + \sin(\theta + 45^{\circ}) = D \cdot \frac{\sqrt{2}}{2} (\sin \theta - \cos \theta) + \frac{\sqrt{2}}{2} (\sin \theta + \cos \theta) \] Factoring out \( \frac{\sqrt{2}}{2} \): \[ = \frac{\sqrt{2}}{2} \left( D (\sin \theta - \cos \theta) + (\sin \theta + \cos \theta) \right) \] \[ = \frac{\sqrt{2}}{2} \left( (D + 1) \sin \theta + (-D + 1) \cos \theta \right) \] So the simplified expression is: \[ \frac{\sqrt{2}}{2} \left( (D + 1) \sin \theta + (1 - D) \cos \theta \right) \]