Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 34 and standard deviation 3 . What is the probability that \( X \) is less than 43 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Bartlett Riley. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is less than 43 is 0.997.

Solución

To determine the probability that \( X \) is less than 43, given that \( X \) is normally distributed with a mean (\( \mu \)) of 34 and a standard deviation (\( \sigma \)) of 3, we can use the 68-95-99.7 (empirical) rule. ### Steps: 1. **Identify the Number of Standard Deviations:** \[ 43 = \mu + k\sigma \implies 43 = 34 + k \times 3 \implies k = \frac{43 - 34}{3} = 3 \] So, 43 is 3 standard deviations above the mean. 2. **Apply the Empirical Rule:** - **Within 1 standard deviation (\( \mu \pm 1\sigma \)):** Approximately 68% of the data. - **Within 2 standard deviations (\( \mu \pm 2\sigma \)):** Approximately 95% of the data. - **Within 3 standard deviations (\( \mu \pm 3\sigma \)):** Approximately 99.7% of the data. 3. **Interpret the Result:** Since 43 is \( \mu + 3\sigma \), it represents the upper bound of the 99.7% range. This means that approximately 99.7% of the data lies below 43. ### Final Answer: \[ 0.997 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the probability that \( X \) is less than 43, we first calculate how many standard deviations away 43 is from the mean. The mean is 34, and the standard deviation is 3. We calculate the Z-score: \[ Z = \frac{X - \mu}{\sigma} = \frac{43 - 34}{3} = \frac{9}{3} = 3 \] According to the \( 0.68-0.95-0.997 \) rule, approximately 99.7% of the data falls within 3 standard deviations from the mean in a normal distribution. Since 43 is 3 standard deviations above the mean, the area to the left of this Z-score (i.e., the probability that \( X < 43 \)) is about 99.85% (which accounts for the total area or probability of 0.5 in each tail of the distribution). Therefore, the probability that \( X < 43 \) is approximately: \[ P(X < 43) \approx 0.999 \] So, rounding to the nearest thousandth, the answer is: **0.999**

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad