Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 7 and standard deviation 10 . What is the probability that \( X \) is less than 27 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Ball Bob. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is less than 27 is approximately 0.950.

Solución

To find the probability that \( X \) is less than 27, we can use the properties of the normal distribution along with the \( 0.68-0.95-0.997 \) rule. 1. **Identify the mean and standard deviation:** - Mean (\( \mu \)) = 7 - Standard deviation (\( \sigma \)) = 10 2. **Calculate the z-score for \( X = 27 \):** The z-score is calculated using the formula: \[ z = \frac{X - \mu}{\sigma} \] Substituting the values: \[ z = \frac{27 - 7}{10} = \frac{20}{10} = 2 \] 3. **Use the z-score to find the probability:** A z-score of 2 corresponds to the area under the normal curve to the left of this z-score. According to the \( 0.68-0.95-0.997 \) rule: - Approximately 68% of the data falls within 1 standard deviation of the mean (between \( \mu - \sigma \) and \( \mu + \sigma \)). - Approximately 95% falls within 2 standard deviations (between \( \mu - 2\sigma \) and \( \mu + 2\sigma \)). - Approximately 99.7% falls within 3 standard deviations. Since \( z = 2 \) is within 2 standard deviations, we can conclude that approximately 95% of the data falls within this range. Therefore, the area to the left of \( z = 2 \) is: \[ P(X < 27) \approx 0.95 \] 4. **Final answer:** The probability that \( X \) is less than 27 is approximately \( 0.95 \). Thus, the final answer is: \[ \boxed{0.950} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To apply the \( 0.68-0.95-0.997 \) rule, let's first determine how many standard deviations 27 is from the mean of 7. The difference between 27 and 7 is \( 27 - 7 = 20 \). The standard deviation is 10, so we calculate: \[ z = \frac{(X - \mu)}{\sigma} = \frac{(27 - 7)}{10} = \frac{20}{10} = 2 \] Now we can use the \( 0.68-0.95-0.997 \) rule. A z-score of 2 means we are looking at two standard deviations above the mean. According to the rule, approximately 95% of the observations fall within two standard deviations of the mean (between -2 and 2). Since 27 is 2 standard deviations above the mean, we can find the probability that \( X \) is less than 27: \[ P(X < 27) \approx 0.95 \] Therefore, the probability that \( X \) is less than 27 is approximately 0.95 when rounded to the nearest thousandth.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad