Pregunta
upstudy study bank question image url

Alang is going to invest in an account paying an interest rate of \( 5.7 \% \) compounded continuously. How much would Alang need to invest, to the nearest dollar, for the value of the account to reach \( \$ 113,000 \) in 5 years?

Ask by Coleman Nguyen. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Alang needs to invest \$84,978 initially.

Solución

To determine how much Alang needs to invest today to reach \$113,000 in 5 years with an interest rate of \( 5.7\% \) compounded continuously, we can use the formula for continuous compounding: \[ A = P \cdot e^{rt} \] Where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial investment), - \( r \) is the annual interest rate (in decimal), - \( t \) is the time the money is invested for, - \( e \) is the base of the natural logarithm (approximately 2.71828). **Given:** - \( A = \$113,000 \) - \( r = 5.7\% = 0.057 \) - \( t = 5 \) years **Step 1: Rearrange the Formula to Solve for \( P \)** \[ P = \frac{A}{e^{rt}} \] **Step 2: Calculate the Exponent** \[ rt = 0.057 \times 5 = 0.285 \] **Step 3: Compute \( e^{0.285} \)** \[ e^{0.285} \approx 1.32976 \quad (\text{using a Taylor series expansion or a calculator}) \] **Step 4: Calculate \( P \)** \[ P = \frac{113,000}{1.32976} \approx 84,978 \] **Conclusion:** Alang needs to invest **\$84,978** today to reach \$113,000 in 5 years with a continuously compounded interest rate of \( 5.7\% \). **Final Answer:** Alang needs to invest \$84 978 initially.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find out how much Alang needs to invest, we can use the formula for continuous compounding, which is: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested for in years. - \( e \) is the base of the natural logarithm, approximately equal to 2.71828. In this case, we know \( A = 113,000 \), \( r = 0.057 \), and \( t = 5 \). We need to solve for \( P \). Rearranging the formula for \( P \): \[ P = \frac{A}{e^{rt}} \] Plugging in the values: \[ P = \frac{113,000}{e^{0.057 \times 5}} \] Calculating \( e^{0.057 \times 5} \): \[ e^{0.285} \approx 1.329 \] Now plug this back into the equation: \[ P \approx \frac{113,000}{1.329} \approx 85,000 \] So, Alang would need to invest approximately \( \$ 85,000 \) to the nearest dollar.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad