Pregunta
upstudy study bank question image url

Determine \( T_{10} \) of the following arithmetic sequences: \( \begin{array}{ll}\text { a) } a=4 \text { and } d=\frac{1}{2} & \text { b) } T_{2}=-10 \text { and } T_{6}=-160 \\ \text { d) } T_{5}=8 \text { and } d=3 & \text { d) } T_{2}=4 x \text { and } T_{5}=10 x\end{array} \)

Ask by Barrett Hobbs. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( T_{10} \) values for the given arithmetic sequences are: - **a)** \( \frac{17}{2} \) - **b)** \( -310 \) - **c)** \( 23 \) - **d)** \( 20x \)

Solución

Let's determine \( T_{10} \) for each of the given arithmetic sequences. ### a) \( a = 4 \) and \( d = \frac{1}{2} \) **Formula for the \( n \)-th term of an arithmetic sequence:** \[ T_n = a + (n - 1) \cdot d \] **Calculate \( T_{10} \):** \[ T_{10} = 4 + (10 - 1) \cdot \frac{1}{2} = 4 + 9 \cdot \frac{1}{2} = 4 + \frac{9}{2} = \frac{8}{2} + \frac{9}{2} = \frac{17}{2} \] **Answer:** \( T_{10} = \frac{17}{2} \) --- ### b) \( T_{2} = -10 \) and \( T_{6} = -160 \) **Set up equations using the formula:** \[ \begin{cases} T_{2} = a + d = -10 \\ T_{6} = a + 5d = -160 \end{cases} \] **Subtract the first equation from the second:** \[ (a + 5d) - (a + d) = -160 - (-10) \\ 4d = -150 \\ d = -37.5 \] **Find \( a \) using \( T_{2} = a + d = -10 \):** \[ a = -10 - d = -10 - (-37.5) = 27.5 \] **Calculate \( T_{10} \):** \[ T_{10} = a + 9d = 27.5 + 9 \cdot (-37.5) = 27.5 - 337.5 = -310 \] **Answer:** \( T_{10} = -310 \) --- ### c) \( T_{5} = 8 \) and \( d = 3 \) **Find \( a \) using \( T_{5} = a + 4d = 8 \):** \[ a + 4 \cdot 3 = 8 \\ a + 12 = 8 \\ a = 8 - 12 = -4 \] **Calculate \( T_{10} \):** \[ T_{10} = a + 9d = -4 + 9 \cdot 3 = -4 + 27 = 23 \] **Answer:** \( T_{10} = 23 \) --- ### d) \( T_{2} = 4x \) and \( T_{5} = 10x \) **Set up equations using the formula:** \[ \begin{cases} T_{2} = a + d = 4x \\ T_{5} = a + 4d = 10x \end{cases} \] **Subtract the first equation from the second:** \[ (a + 4d) - (a + d) = 10x - 4x \\ 3d = 6x \\ d = 2x \] **Find \( a \) using \( T_{2} = a + d = 4x \):** \[ a = 4x - d = 4x - 2x = 2x \] **Calculate \( T_{10} \):** \[ T_{10} = a + 9d = 2x + 9 \cdot 2x = 2x + 18x = 20x \] **Answer:** \( T_{10} = 20x \) --- ### Summary of Results - **a)** \( T_{10} = \frac{17}{2} \) - **b)** \( T_{10} = -310 \) - **c)** \( T_{10} = 23 \) - **d)** \( T_{10} = 20x \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \( T_{10} \) of each arithmetic sequence, we will follow the formulas and calculations relevant to the properties of arithmetic sequences. For an arithmetic sequence, the \( n \)-th term is given by: \[ T_n = a + (n-1)d \] where \( a \) is the first term and \( d \) is the common difference. ### a) Given \( a = 4 \) and \( d = \frac{1}{2} \): Calculating \( T_{10} \): \[ T_{10} = 4 + (10 - 1) \cdot \frac{1}{2} = 4 + 9 \cdot \frac{1}{2} = 4 + 4.5 = 8.5 \] ### b) Given \( T_2 = -10 \) and \( T_6 = -160 \): The common difference \( d \) can be calculated as follows: \[ T_2 = a + (2-1)d = a + d = -10 \] \[ T_6 = a + (6-1)d = a + 5d = -160 \] We now have a system of equations: 1. \( a + d = -10 \) 2. \( a + 5d = -160 \) Subtract the first from the second: \[ (a + 5d) - (a + d) = -160 + 10 \] \[ 4d = -150 \Rightarrow d = -37.5 \] Plugging \( d \) back into the first equation: \[ a - 37.5 = -10 \Rightarrow a = 27.5 \] Now, calculating \( T_{10} \): \[ T_{10} = 27.5 + (10-1)(-37.5) = 27.5 - 337.5 = -310 \] ### c) Given \( T_5 = 8 \) and \( d = 3 \): Calculating \( T_1 \): \[ T_5 = a + (5-1)d = a + 4d = 8 \] \[ a + 4 \cdot 3 = 8 \Rightarrow a + 12 = 8 \Rightarrow a = -4 \] Now, calculating \( T_{10} \): \[ T_{10} = -4 + (10-1) \cdot 3 = -4 + 27 = 23 \] ### d) Given \( T_2 = 4x \) and \( T_5 = 10x \): From the first term: \[ T_2 = a + d = 4x \] \[ T_5 = a + 4d = 10x \] The equations become: 1. \( a + d = 4x \) 2. \( a + 4d = 10x \) Subtracting: \[ (a + 4d) - (a + d) = 10x - 4x \] \[ 3d = 6x \Rightarrow d = 2x \] Substituting \( d \) into the first equation: \[ a + 2x = 4x \Rightarrow a = 2x \] Now calculating \( T_{10} \): \[ T_{10} = a + (10-1)d = 2x + 9(2x) = 2x + 18x = 20x \] In summary: - \( T_{10} \text{ for } a) = 8.5 \) - \( T_{10} \text{ for } b) = -310 \) - \( T_{10} \text{ for } c) = 23 \) - \( T_{10} \text{ for } d) = 20x \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad