Pregunta
upstudy study bank question image url

Use a graph to determine the local minimum(s) of \( g(x)=\left\{\begin{array}{ll}|x| & \text { if }-2 \leq x \leq 1 \\ \sqrt{x} & \text { if } 1
Ask by Lyons Simpson. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The local minima of \( g(x) \) are at \( (0,0) \) and \( (8,-2) \).

Solución

To determine the local minima of the piecewise function \[ g(x) = \begin{cases} |x| & \text{if } -2 \leq x \leq 1, \\ \sqrt{x} & \text{if } 1 < x < 4, \\ -x + 6 & \text{if } 4 \leq x \leq 8, \end{cases} \] let's analyze each interval and the behavior of the function at the transition points. ### 1. Interval \([-2, 1]\): \(g(x) = |x|\) - **Graph Shape**: V-shaped with the vertex at \(x = 0\). - **Local Minimum**: At \(x = 0\), \(g(0) = 0\). This is the lowest point in this interval. ### 2. Interval \(1 < x < 4\): \(g(x) = \sqrt{x}\) - **Graph Shape**: Increasing function. - **Behavior at \(x = 1\)**: \(g(1) = 1\) (continuous with the previous interval). - **Derivative from Left (\(x < 1\))**: \(1\). - **Derivative from Right (\(x > 1\))**: \(\frac{1}{2\sqrt{x}} = \frac{1}{2}\). - **Conclusion**: \(x = 1\) is not a local minimum since the function continues to increase on both sides. ### 3. Interval \(4 \leq x \leq 8\): \(g(x) = -x + 6\) - **Graph Shape**: Decreasing linear function. - **Behavior at \(x = 4\)**: \(g(4) = 2\). - **Derivative from Left (\(x < 4\))**: \(\frac{1}{4}\). - **Derivative from Right (\(x > 4\))**: \(-1\). - **Conclusion**: \(x = 4\) is a local maximum since the function changes from increasing to decreasing. ### 4. Endpoint \(x = 8\) - **Value**: \(g(8) = -8 + 6 = -2\). - **Behavior**: As \(x\) approaches 8 from the left, the function decreases towards \(-2\). - **Conclusion**: \(x = 8\) is a local minimum because it is the lowest point in its immediate neighborhood. ### Summary of Local Minima: - **\((0, 0)\)**: Local minimum from the first interval. - **\((8, -2)\)**: Local minimum at the endpoint. Therefore, the only local minima of \(g(x)\) are at \((0, 0)\) and \((8, -2)\). **Answer:** \( (0,0) \) and \( (8,-2) \) are the only local minimums

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The local minimum of the piecewise function \( g(x) \) occurs where the function takes its lowest value in a given interval. Analyzing the graph, we can see that for \( -2 \leq x \leq 1 \), the graph is a V-shape with a minimum at \( (0,0) \). As we move into the interval \( 1 < x < 4 \), \( g(x) = \sqrt{x} \), which has no local minimum since it’s continuous and increasing. Then from \( 4 \leq x \leq 8 \), \( g(x) = -x + 6 \), where the function decreases, making \( (8,-2) \) the lowest point. Therefore, the local minima occur at \( (0,0) \) and \( (8,-2) \). To visually confirm the local minima, sketch the three components of the piecewise function together. The first segment forms the V-shape with its bottom at (0,0). In the second segment, \(\sqrt{x}\) continuously rises and doesn't dip below the local minimum established earlier. Lastly, the linear piece from \( 4 \leq x \leq 8 \) confirms \( (8,-2) \) as the endpoint. Remember, you can always use derivatives to help identify where local minima occur if you're solving similar problems in the future!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad