Pregunta
upstudy study bank question image url

Numeric 1 point Tessa deposited \( \$ 1,056.25 \) in a 4-year CD paying \( 6.01 \% \) compounded daily. How much more interest would she earn if the CD paid the same rate compounded continuously? Type your answer...

Ask by Mcguire Long. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Tessa would earn approximately \$1.58 more in interest with continuous compounding.

Solución

To determine how much more interest Tessa would earn with continuous compounding compared to daily compounding, follow these steps: 1. **Parameters:** - **Principal (P):** \$1,056.25 - **Annual Interest Rate (r):** 6.01% or 0.0601 - **Time (t):** 4 years - **Compounding Frequency (n):** - Daily: 365 times/year - Continuously: Infinite 2. **Future Value with Daily Compounding:** \[ A_{\text{daily}} = P \left(1 + \frac{r}{n}\right)^{nt} \] \[ A_{\text{daily}} \approx 1056.25 \times \left(1 + \frac{0.0601}{365}\right)^{1460} \approx \$1,341.71 \] 3. **Future Value with Continuous Compounding:** \[ A_{\text{continuous}} = P \times e^{rt} \] \[ A_{\text{continuous}} \approx 1056.25 \times e^{0.0601 \times 4} \approx \$1,343.29 \] 4. **Difference in Interest Earned:** \[ \text{Difference} = A_{\text{continuous}} - A_{\text{daily}} \approx 1343.29 - 1341.71 = \$1.58 \] **Tessa would earn approximately \$1.58 more in interest with continuous compounding.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find how much more interest Tessa would earn if the CD paid interest compounded continuously instead of daily, we can use the formulas for each method. 1. **Daily Compounding:** - Formula: \( A = P \left(1 + \frac{r}{n}\right)^{nt} \) - Where: - \( A \) = the amount of money accumulated after n years, including interest. - \( P \) = principal amount (initial deposit). - \( r \) = annual interest rate (decimal). - \( n \) = number of times interest is compounded per year. - \( t \) = number of years the money is invested or borrowed. Using \( P = 1056.25 \), \( r = 0.0601 \), \( n = 365 \), and \( t = 4 \): \[ A = 1056.25 \left(1 + \frac{0.0601}{365}\right)^{365 \times 4} \approx 1056.25 (1.2614) \approx 1334.87 \] - Interest earned = \( A - P = 1334.87 - 1056.25 = 278.62 \) 2. **Continuous Compounding:** - Formula: \( A = Pe^{rt} \) - Where \( e \) is the base of the natural logarithm, approximately equal to 2.71828. Using the same values: \[ A = 1056.25 e^{0.0601 \times 4} \approx 1056.25 e^{0.2404} \approx 1056.25 \times 1.2712 \approx 1346.85 \] - Interest earned = \( A - P = 1346.85 - 1056.25 = 290.60 \) Now, to find the difference in interest earned: \[ \text{Difference} = 290.60 - 278.62 \approx 11.98 \] Thus, Tessa would earn approximately **$11.98** more interest if the CD paid the same rate compounded continuously.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad