Pregunta
upstudy study bank question image url

4. Graph the parabola. Include the vertex and two accurate points on each side of the axis of symmetry. \( f(x)=2(x-3)^{2}-6 \)

Ask by Pope Tucker. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the parabola \( f(x) = 2(x - 3)^2 - 6 \), plot the vertex at \( (3, -6) \) and the axis of symmetry at \( x = 3 \). Then, plot additional points such as \( (1, 2) \), \( (2, -4) \), \( (4, -4) \), and \( (5, 2) \). Draw a smooth, upward-opening curve through these points to complete the graph.

Solución

To graph the parabola defined by the function \( f(x) = 2(x - 3)^2 - 6 \), we'll follow these steps: 1. **Identify the Vertex** 2. **Determine the Axis of Symmetry** 3. **Calculate Additional Points** 4. **Plot the Points and Draw the Parabola** Let's go through each step in detail. --- ### 1. Identify the Vertex The given quadratic function is in **vertex form**, which is: \[ f(x) = a(x - h)^2 + k \] Here, \((h, k)\) represents the vertex of the parabola. Comparing with the given function: \[ f(x) = 2(x - 3)^2 - 6 \] - \( h = 3 \) - \( k = -6 \) **Vertex:** \( (3, -6) \) --- ### 2. Determine the Axis of Symmetry The **axis of symmetry** is a vertical line that passes through the vertex. Its equation is: \[ x = h \] For our function: \[ x = 3 \] This line divides the parabola into two mirror-image halves. --- ### 3. Calculate Additional Points To accurately graph the parabola, we'll find two points on each side of the axis of symmetry. #### Selecting x-values: Choose x-values around the vertex \( x = 3 \): - **Left of Vertex:** \( x = 1 \) and \( x = 2 \) - **Right of Vertex:** \( x = 4 \) and \( x = 5 \) #### Calculating f(x) for Each x-value: 1. **For \( x = 1 \):** \[ f(1) = 2(1 - 3)^2 - 6 = 2(4) - 6 = 8 - 6 = 2 \] **Point:** \( (1, 2) \) 2. **For \( x = 2 \):** \[ f(2) = 2(2 - 3)^2 - 6 = 2(1) - 6 = 2 - 6 = -4 \] **Point:** \( (2, -4) \) 3. **For \( x = 4 \):** \[ f(4) = 2(4 - 3)^2 - 6 = 2(1) - 6 = 2 - 6 = -4 \] **Point:** \( (4, -4) \) 4. **For \( x = 5 \):** \[ f(5) = 2(5 - 3)^2 - 6 = 2(4) - 6 = 8 - 6 = 2 \] **Point:** \( (5, 2) \) **Additional Points:** - Left Side: - \( (1, 2) \) - \( (2, -4) \) - Right Side: - \( (4, -4) \) - \( (5, 2) \) --- ### 4. Plot the Points and Draw the Parabola Here's a table of the key points to plot: | \( x \) | \( f(x) \) | Point | |---------|------------|------------| | 1 | 2 | (1, 2) | | 2 | -4 | (2, -4) | | 3 | -6 | (3, -6) **Vertex** | | 4 | -4 | (4, -4) | | 5 | 2 | (5, 2) | **Steps to Graph:** 1. **Draw the Coordinate Plane:** - Horizontal axis (x-axis) and vertical axis (y-axis). 2. **Plot the Vertex:** - Mark the point \( (3, -6) \). 3. **Draw the Axis of Symmetry:** - Draw a dashed vertical line through \( x = 3 \). 4. **Plot the Additional Points:** - Plot \( (1, 2) \), \( (2, -4) \), \( (4, -4) \), and \( (5, 2) \). 5. **Draw the Parabola:** - Connect the points smoothly, ensuring the parabola opens **upward** since the coefficient \( a = 2 \) is positive. - The graph should be symmetric about the axis \( x = 3 \). --- ### Visual Representation While I can't provide a visual graph here, following the steps above with graph paper or a graphing tool will yield the correct parabola. Here's a rough sketch of how the points align: ``` y | 2 | * * 1 | 0 | -2| -4 | * * -6 | V -8| ------------------------- x 1 2 3 4 5 ``` - **\( V \)** represents the Vertex at \( (3, -6) \). - Stars (\(*\)) represent the additional points. --- ### Summary of Key Features - **Vertex:** \( (3, -6) \) - **Axis of Symmetry:** \( x = 3 \) - **Additional Points:** - Left: \( (1, 2) \) and \( (2, -4) \) - Right: \( (4, -4) \) and \( (5, 2) \) - **Direction:** Opens **upward** (since \( a = 2 > 0 \)) By plotting these points and connecting them with a smooth, U-shaped curve, you'll accurately graph the parabola defined by \( f(x) = 2(x - 3)^2 - 6 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the parabola \( f(x)=2(x-3)^{2}-6 \), we first identify the vertex. The vertex is at the point \( (3, -6) \). Next, we find points on either side of the axis of symmetry, which is the vertical line \( x=3 \). If we plug in \( x=2 \) and \( x=4 \), we get: - For \( x=2 \): \( f(2) = 2(2-3)^{2} - 6 = -4 \). So, one point is \( (2, -4) \). - For \( x=4 \): \( f(4) = 2(4-3)^{2} - 6 = -4 \). Another point is \( (4, -4) \). Thus, the points \( (2, -4) \) and \( (4, -4) \) are identical heights mirrored around the vertex. Your parabola opens upwards due to the positive coefficient, and it can be sketched with these points and the vertex to complete the graph. Happy graphing! A little tip: always double-check your calculations to ensure that your points are correctly plotted. It’s easy to mistype a number or miscalculate a function value, which could lead to a wobbly parabola!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad