Describe the transformation of the graph when the equation of the cosine function changes from \( y = \cos(x) \) to \( y = \cos(x - \frac{\pi}{3}) + 2 \). What effects does this have on the graph?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
When transforming the equation of the cosine function from \( y = \cos(x) \) to \( y = \cos(x - \frac{\pi}{3}) + 2 \), you first notice a horizontal shift. The term \( x - \frac{\pi}{3} \) indicates the graph shifts to the right by \( \frac{\pi}{3} \), meaning every point on the original cosine curve moves \( \frac{\pi}{3} \) units to the right. Next, the addition of \( +2 \) at the end lifts the entire graph up by 2 units. This results in a transformation where not only is the wave shifted right, but it also oscillates around the line \( y = 2 \) instead of around the x-axis, giving you a new midline. So, the peaks of the wave reach up to 3, while the troughs dip to 1, reflecting this new vertical shift!