Pregunta
upstudy study bank question image url

An account is opened with an initial deposit of \( \$ 5,500 \) and earns \( 2.5 \% \) interest compounded annually. What will the account be worth in 10 years? Round your answer to the nearest cent. Do NOT round until you have calculated the final answer.

Ask by Hobbs Schmidt. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The account will be worth approximately \$7,040.46 after 10 years.

Solución

To find the worth of the account after 10 years with an initial deposit of $5,500 and an annual interest rate of 2.5% compounded annually, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (initial deposit). - \( r \) is the annual interest rate (in %). - \( n \) is the number of years. Given: - Initial deposit \( P = \$5,500 \) - Annual interest rate \( r = 2.5\% \) - Number of years \( n = 10 \) Substitute the given values into the formula: \[ A = 5500 \left( 1 + \frac{2.5}{100} \right)^{10} \] Now, we can calculate the amount of money accumulated after 10 years using the formula. Calculate the value by following steps: - step0: Calculate: \(5500\left(1+\frac{2.5}{100}\right)^{10}\) - step1: Divide the terms: \(5500\left(1+\frac{1}{40}\right)^{10}\) - step2: Add the numbers: \(5500\left(\frac{41}{40}\right)^{10}\) - step3: Simplify: \(5500\times \frac{41^{10}}{40^{10}}\) - step4: Rewrite the expression: \(20\times 275\times \frac{41^{10}}{40^{10}}\) - step5: Rewrite the expression: \(20\times 275\times \frac{41^{10}}{20^{10}\times 2^{10}}\) - step6: Reduce the numbers: \(275\times \frac{41^{10}}{20^{9}\times 2^{10}}\) - step7: Rewrite the expression: \(25\times 11\times \frac{41^{10}}{20^{9}\times 2^{10}}\) - step8: Rewrite the expression: \(25\times 11\times \frac{41^{10}}{5^{9}\times 4^{9}\times 2^{10}}\) - step9: Rewrite the expression: \(5^{2}\times 11\times \frac{41^{10}}{5^{9}\times 4^{9}\times 2^{10}}\) - step10: Reduce the numbers: \(11\times \frac{41^{10}}{5^{7}\times 4^{9}\times 2^{10}}\) - step11: Multiply the fractions: \(\frac{11\times 41^{10}}{5^{7}\times 4^{14}}\) - step12: Calculate: \(\frac{11\times 41^{10}}{80^{7}}\) The account will be worth approximately $7,040.46 after 10 years, rounded to the nearest cent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the future value of an account with compound interest, you can use the formula: \[ A = P(1 + r)^n \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested or borrowed. In this case: - \( P = 5500 \) - \( r = 0.025 \) (which is 2.5% as a decimal) - \( n = 10 \) Plugging the numbers into the formula: \[ A = 5500(1 + 0.025)^{10} \] Calculating it step-by-step: 1. Calculate \( 1 + 0.025 = 1.025 \). 2. Raise this to the power of 10: \( 1.025^{10} \approx 1.2800845 \). 3. Multiply by the principal: \[ A \approx 5500 \times 1.2800845 \approx 7040.46475 \] Rounding to the nearest cent, the account will be worth approximately \( \$ 7,040.46 \) in 10 years.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad