Pregunta
upstudy study bank question image url

The function below has at least one rational zero. Use this fact to find all zeros of the function. \[ h(x)=6 x^{3}-43 x^{2}+6 x+7 \] If there is more than one zero, separate them with commas. Write exact values, not decimal approximations.

Ask by Bowman Mills. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The zeros of the function are 7, $\frac{1}{2}$, and $-\frac{1}{3}$.

Solución

To find all zeros of the function \( h(x) = 6x^3 - 43x^2 + 6x + 7 \), we can follow these steps: 1. **Rational Root Theorem**: Possible rational zeros are factors of the constant term (7) divided by factors of the leading coefficient (6). Therefore, the possible rational zeros are: \[ \pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{3}, \pm \frac{7}{3}, \pm \frac{1}{6}, \pm \frac{7}{6} \] 2. **Testing Possible Zeros**: - **\( x = 7 \)**: \[ h(7) = 6(7)^3 - 43(7)^2 + 6(7) + 7 = 2058 - 2107 + 42 + 7 = 0 \] So, \( x = 7 \) is a zero. - **Synthetic Division**: Divide \( h(x) \) by \( (x - 7) \) to find the quadratic factor: \[ h(x) = (x - 7)(6x^2 - x - 1) \] 3. **Finding Remaining Zeros**: Solve the quadratic equation \( 6x^2 - x - 1 = 0 \) using the quadratic formula: \[ x = \frac{1 \pm \sqrt{1 + 24}}{12} = \frac{1 \pm 5}{12} \] This gives: \[ x = \frac{6}{12} = \frac{1}{2}, \quad x = \frac{-4}{12} = -\frac{1}{3} \] 4. **Conclusion**: All zeros of the function \( h(x) \) are: \[ 7, \frac{1}{2}, -\frac{1}{3} \] **Answer**: 7, $\dfrac{1}{2}$, $-\dfrac{1}{3}$

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the rational zeros of the function \( h(x) = 6x^3 - 43x^2 + 6x + 7 \), we can apply the Rational Root Theorem. The possible rational roots are given by the factors of the constant term (7) divided by the factors of the leading coefficient (6). These factors are \( \pm 1, \pm 7 \) for the constant and \( \pm 1, \pm 2, \pm 3, \pm 6 \) for the leading coefficient. Thus, the possible rational zeros are \( \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{3}, \pm \frac{7}{6} \). Testing these values, we find that \( x = 7 \) is a zero. Using synthetic division to factor the polynomial, we divide \( h(x) \) by \( (x - 7) \) and find: \[ h(x) = (x - 7)(6x^2 + 7). \] Now we can set \( 6x^2 + 7 = 0 \) to find additional zeros. Solving this gives: \[ 6x^2 = -7 \quad \Rightarrow \quad x^2 = -\frac{7}{6}. \] Since this results in no real solutions, we conclude that the function has only one rational zero. Therefore, the zeros of the function are: \[ x = 7. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad