Compute the dot product of the vectors \( \mathbf{v} \) and \( \mathbf{w} \), and find the angle between the vectors. \( \mathbf{v}=-9 \mathbf{i}-\mathbf{j} \) and \( \mathbf{w}=-\mathbf{i}-9 \mathbf{j} \) \( \mathbf{v} \cdot \mathbf{w}=18 \) (Simplify your answer.) Find the magnitude of the vectors. \( |\mathbf{v}|=\sqrt{82} \) and \( |\mathbf{w}|=\sqrt{82} \) (Type exact answers, using radicals as needed.) The angle between the vectors is \( \square^{\circ} \). (Type your answer in degrees. Do not round until the final answer. Then round to the nearest tenth as needed.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the angle between the vectors \( \mathbf{v} \) and \( \mathbf{w} \), we can use the formula: \[ \cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} \] Given that \( \mathbf{v} \cdot \mathbf{w} = 18 \), \( |\mathbf{v}| = \sqrt{82} \), and \( |\mathbf{w}| = \sqrt{82} \), we plug in the values: \[ \cos \theta = \frac{18}{\sqrt{82} \cdot \sqrt{82}} = \frac{18}{82} = \frac{9}{41} \] Now, to find the angle \( \theta \), we take the arccosine: \[ \theta = \arccos\left(\frac{9}{41}\right) \] Calculating this gives us: \[ \theta \approx 69.5^\circ \] So the angle between the vectors is approximately \( 69.5 \) degrees when rounded to the nearest tenth.