Pregunta
upstudy study bank question image url

\( 8.5 \sin \left(\theta-20^{\circ}\right)=\cos 3 \theta \). Find the general solution.

Ask by Chan Reeves. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The general solution is \( \theta = 20^\circ + k \times 360^\circ \) for any integer \( k \).

Solución

To solve the equation \( 8.5 \sin(\theta - 20^{\circ}) = \cos(3\theta) \), we will follow these steps: 1. **Rewrite the equation**: We can express the equation as: \[ 8.5 \sin(\theta - 20^{\circ}) - \cos(3\theta) = 0 \] 2. **Use trigonometric identities**: We can use the identity for \(\cos(3\theta)\): \[ \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta) \] However, this might complicate the equation. Instead, we can look for solutions directly. 3. **Set up the general solution**: The equation involves both sine and cosine functions, which suggests that we can find solutions by considering the periodic nature of these functions. 4. **Finding specific solutions**: We can find specific angles that satisfy the equation. 5. **General solution**: The general solution for trigonometric equations typically involves adding integer multiples of the period of the sine and cosine functions. Let's analyze the equation further to find specific solutions. ### Step 1: Find specific solutions We can try to find values of \(\theta\) that satisfy the equation. 1. **Assume a value for \(\theta\)**: Let's start with \(\theta = 20^{\circ}\): \[ 8.5 \sin(20^{\circ} - 20^{\circ}) = \cos(3 \times 20^{\circ}) \implies 8.5 \cdot 0 = \cos(60^{\circ}) \implies 0 = 0 \] This is a valid solution. 2. **Next, consider the periodic nature**: The sine function has a period of \(360^{\circ}\) and the cosine function has a period of \(360^{\circ}\) as well. Therefore, we can express the general solution as: \[ \theta = 20^{\circ} + k \cdot 360^{\circ} \quad \text{for any integer } k \] ### Step 2: Find other solutions To find other solutions, we can also consider the angles where the sine and cosine functions might equal each other. 1. **Using the identity**: We can also set: \[ \sin(\theta - 20^{\circ}) = \frac{1}{8.5} \cos(3\theta) \] This will require numerical or graphical methods to find additional solutions. ### Final General Solution The general solution we have found so far is: \[ \theta = 20^{\circ} + k \cdot 360^{\circ} \quad \text{for any integer } k \] To find additional solutions, we would typically use numerical methods or graphing techniques to find intersections of the two functions. If you would like to explore numerical solutions or specific values further, please let me know!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( 8.5 \sin \left(\theta-20^{\circ}\right)=\cos 3 \theta \), we first express both sides in a suitable format. We know that \( \cos 3\theta = \sin \left(90^\circ - 3\theta\right) \), allowing us to write: \[ 8.5 \sin(\theta - 20^\circ) = \sin \left(90^\circ - 3\theta\right) \] Next, we can use the sine identity, which implies the equality: \[ \theta - 20^\circ = n\pi + (-1)^n \left(90^\circ - 3\theta\right) \] for \( n \in \mathbb{Z} \). This expands to two cases: 1. \( \theta - 20^\circ = n\pi + (90^\circ - 3\theta) \) 2. \( \theta - 20^\circ = n\pi - (90^\circ - 3\theta) \) ### Case 1: \[ \theta - 20^\circ = n\pi + 90^\circ - 3\theta \] Rearranging gives: \[ \theta + 3\theta = n\pi + 110^\circ \] \[ 4\theta = n\pi + 110^\circ \] \[ \theta = \frac{n\pi + 110^\circ}{4} \] ### Case 2: \[ \theta - 20^\circ = n\pi - (90^\circ - 3\theta) \] Rearranging gives: \[ \theta - 20^\circ = n\pi - 90^\circ + 3\theta \] \[ \theta - 3\theta = n\pi - 90^\circ + 20^\circ \] \[ -2\theta = n\pi - 70^\circ \] \[ \theta = -\frac{n\pi - 70^\circ}{2} \] or \[ \theta = \frac{70^\circ - n\pi}{2} \] Both expressions give us the general solutions. Therefore, the complete general solution is: \[ \theta = \frac{n\pi + 110^\circ}{4} \quad \text{and} \quad \theta = \frac{70^\circ - n\pi}{2}, \quad n \in \mathbb{Z} \]

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad