1. Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cos B+\sin A \sin B \) Compare the values of \( \cos (A-B) \) with the values of \( \cos A-\cos B \) and \( \cos A \cos B+\sin A \sin B \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
For the first set of angles, \( A = 60^{\circ} \) and \( B = 30^{\circ} \): (a) \( \cos(A-B) = \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \approx 0.866 \) (b) \( \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) = 0.5 - \sqrt{3}/2 \approx -0.366 \) (c) \( \cos A \cos B + \sin A \sin B = \cos(60^{\circ})\cos(30^{\circ}) + \sin(60^{\circ})\sin(30^{\circ}) \approx 0.5 \cdot \sqrt{3}/2 + \sqrt{3}/2 \cdot 0.5 \approx 0.866 \) Now moving to the next pair, \( A = 110^{\circ} \) and \( B = 50^{\circ} \): (a) \( \cos(A-B) = \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) = 0.5 \) (b) \( \cos A - \cos B = \cos(110^{\circ}) - \cos(50^{\circ}) \approx -0.342 - 0.643 \approx -0.985 \) (c) \( \cos A \cos B + \sin A \sin B \approx (-0.342 \cdot 0.643) + (0.940 \cdot 0.766) \approx 0.5 \) For the final set, \( A = 225^{\circ} \) and \( B = 135^{\circ} \): (a) \( \cos(A-B) = \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0 \) (b) \( \cos A - \cos B = \cos(225^{\circ}) - \cos(135^{\circ}) \approx -0.707 - (-0.707) = 0 \) (c) \( \cos A \cos B + \sin A \sin B = (-0.707)(-0.707) + (-0.707)(0.707) = 0.5 + (-0.5) = 0 \) In conclusion, we observe that \( \cos(A-B) \) matches the expressions for both \( \cos A - \cos B \) and \( \cos A \cos B + \sin A \sin B \) only in special cases, demonstrating the fascinating properties of cosine functions and angle differences!