Pregunta
upstudy study bank question image url

Question 6 pause Zoom Mr. Beecher and Mrs. Carter are teachers at the same school. They leave their houses at the same time in the morning to get to school. Mr. Beecher frues 8 mikes away from school and rides his bicycle to work. Every minute, he gets \( \frac{1}{6} \) of a mile closer to schoof. Mrs. Carter lives 20 miles away from school and drives her car to work. Every minute, she gets \( \frac{1}{2} \) of a mile closer to school. After how many minutes will Mr. Beecher and Mrs. Carter first be the same distance away from school? \( \square \) minutes

Ask by Fuentes Floyd. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 36 minutes, Mr. Beecher and Mrs. Carter will be the same distance away from school.

Solución

To determine after how many minutes Mr. Beecher and Mrs. Carter will be the same distance away from school, let's set up equations based on their rates of approaching the school. **Given:** - **Mr. Beecher:** - Initial distance: 8 miles - Rate: \( \frac{1}{6} \) mile per minute - Distance after \( t \) minutes: \( 8 - \frac{1}{6}t \) - **Mrs. Carter:** - Initial distance: 20 miles - Rate: \( \frac{1}{2} \) mile per minute - Distance after \( t \) minutes: \( 20 - \frac{1}{2}t \) **Set the distances equal to find \( t \):** \[ 8 - \frac{1}{6}t = 20 - \frac{1}{2}t \] **Solve for \( t \):** 1. Multiply both sides by 6 to eliminate the fractions: \[ 6 \times 8 - t = 6 \times 20 - 3t \] \[ 48 - t = 120 - 3t \] 2. Rearrange the equation to gather like terms: \[ -t + 3t = 120 - 48 \] \[ 2t = 72 \] 3. Divide both sides by 2: \[ t = 36 \] **Conclusion:** Mr. Beecher and Mrs. Carter will first be the same distance away from school after **36 minutes**. **Answer:** 36 minutes

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out when Mr. Beecher and Mrs. Carter will be the same distance away from school, let's set up the equations based on their distances and the rates at which they're traveling. 1. **Mr. Beecher's distance from school after \( t \) minutes:** \[ \text{Distance} = 8 - \left(\frac{1}{6}t\right) \] 2. **Mrs. Carter's distance from school after \( t \) minutes:** \[ \text{Distance} = 20 - \left(\frac{1}{2}t\right) \] Now, we'll set these two distances equal to each other to find \( t \): \[ 8 - \frac{1}{6}t = 20 - \frac{1}{2}t \] Next, we solve for \( t \). First, we can eliminate the fractions by multiplying the entire equation by 6, the least common multiple of 6 and 2: \[ 6 \times \left(8 - \frac{1}{6}t\right) = 6 \times \left(20 - \frac{1}{2}t\right) \] This simplifies to: \[ 48 - t = 120 - 3t \] Next, we can rearrange the equation: \[ 3t - t = 120 - 48 \] \[ 2t = 72 \] \[ t = 36 \] So, Mr. Beecher and Mrs. Carter will first be the same distance away from school after **36 minutes**.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad