Find an equation for the line with the given properties. Express your answer using either the general form or the slope-intercept form of the equation of a line. Containing the points \( (-3,6) \) and \( (-1,7) \) The equation is (Type an equation. Simplify your answer.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the equation of the line containing the points \((-3,6)\) and \((-1,7)\), we start by calculating the slope \(m\) using the formula \(m = \frac{y_2 - y_1}{x_2 - x_1}\): \[ m = \frac{7 - 6}{-1 - (-3)} = \frac{1}{2} \] Next, we can use the slope-intercept form \(y = mx + b\) to find the y-intercept \(b\). Using point \((-3,6)\): \[ 6 = \frac{1}{2}(-3) + b \] \[ 6 = -\frac{3}{2} + b \] \[ b = 6 + \frac{3}{2} = \frac{12}{2} + \frac{3}{2} = \frac{15}{2} \] Now we have the slope and y-intercept. The equation of the line is: \[ y = \frac{1}{2}x + \frac{15}{2} \] Thus, the equation can be expressed as: \[ y = \frac{1}{2}x + \frac{15}{2} \]