One form of X-band radar has a frequency of 8.0 GHz , which is the same as \( 8.0 \times 10^{9} \mathrm{~Hz} \). What is the energy of the radar? \( \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \) \( [?] \times 10^{[?]} \mathrm{J} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the energy of the radar, we can use the formula for energy related to frequency: \[ E = h \cdot f \] where \(E\) is the energy in joules, \(h\) is Planck's constant (\(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\)), and \(f\) is the frequency in hertz (\(8.0 \times 10^{9} \mathrm{~Hz}\)). Plugging in the values: \[ E = 6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \cdot 8.0 \times 10^{9} \mathrm{~Hz} \] Calculating this gives: \[ E = 5.3008 \times 10^{-24} \mathrm{~J} \] So, the energy of the radar is approximately \(5.3 \times 10^{-24} \mathrm{~J}\). The answer is: \(5.3 \times 10^{-24} \mathrm{~J}\)