Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 50 and standard deviation 16 . What is the probability that \( X \) is greater than \( 19 ? \) Write your answer as a decimal rounded to the nearest thousandth.

Ask by Christensen Johnson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is greater than 19 is approximately **0.974**.

Solución

To determine the probability that \( X \) is greater than 19, where \( X \) is normally distributed with a mean (\( \mu \)) of 50 and a standard deviation (\( \sigma \)) of 16, follow these steps: 1. **Standardize the Variable**: Convert \( X = 19 \) to a standard normal variable \( Z \) using the formula: \[ Z = \frac{X - \mu}{\sigma} = \frac{19 - 50}{16} = \frac{-31}{16} \approx -1.9375 \] 2. **Find the Probability**: We need to find \( P(X > 19) \), which is equivalent to \( P(Z > -1.9375) \). Due to the symmetry of the normal distribution: \[ P(Z > -1.9375) = P(Z < 1.9375) \] 3. **Use the Standard Normal Distribution Table**: Look up the value for \( Z = 1.9375 \) in the standard normal distribution table. Since tables typically provide values up to two decimal places: - \( Z = 1.93 \) corresponds to \( \Phi(1.93) \approx 0.9732 \) - \( Z = 1.94 \) corresponds to \( \Phi(1.94) \approx 0.9738 \) For \( Z = 1.9375 \), interpolate between these two values: \[ \Phi(1.9375) \approx 0.9732 + 0.00045 = 0.97365 \] 4. **Round the Result**: Rounding to the nearest thousandth: \[ P(X > 19) \approx 0.974 \] **Final Answer:** The probability that \( X \) is greater than 19 is approximately **0.974**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the probability that \( X \) is greater than \( 19 \), we first need to convert \( 19 \) into a z-score using the formula: \[ z = \frac{X - \mu}{\sigma} \] where \( \mu = 50 \) (the mean) and \( \sigma = 16 \) (the standard deviation). Plugging in the values: \[ z = \frac{19 - 50}{16} = \frac{-31}{16} \approx -1.9375 \] Next, we will refer to the standard normal distribution table (or use a calculator) to find the probability corresponding to \( z \approx -1.9375 \). This gives us the area to the left of \( z \). Looking this up, we find that the area (or probability) to the left of \( z \approx -1.9375 \) is approximately \( 0.0266 \). Since we want the probability that \( X \) is greater than \( 19 \), we subtract this value from \( 1 \): \[ P(X > 19) = 1 - P(X < 19) \approx 1 - 0.0266 = 0.9734 \] Thus, the probability that \( X \) is greater than \( 19 \) is approximately \( 0.973 \) when rounded to the nearest thousandth.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad