Pregunta
upstudy study bank question image url

You hear on the news that over the next 5 years, the inflation rate will skyrocket to \( 12 \% \). If today a new Blu-ray movie costs \( \$ 19.99 \), assuming continuous compounding, how much will that same disk cost in 5 years?

Ask by Griffiths Pearson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

In 5 years, the Blu-ray movie will cost approximately \$36.43.

Solución

To calculate the future cost of the Blu-ray movie considering an annual continuous inflation rate of \( 12\% \) over \( 5 \) years, we can use the formula for continuous compounding: \[ \text{Future Value} = P \times e^{rt} \] Where: - \( P \) is the present price (\$19.99) - \( r \) is the annual inflation rate (0.12) - \( t \) is the time in years (5) - \( e \) is the base of the natural logarithm (approximately 2.71828) Plugging in the values: \[ \text{Future Value} = 19.99 \times e^{0.12 \times 5} = 19.99 \times e^{0.60} \] First, calculate \( e^{0.60} \): \[ e^{0.60} \approx 1.8221188 \] Now, multiply this by the present price: \[ 19.99 \times 1.8221188 \approx 36.43 \] **Therefore, the Blu-ray movie will cost approximately \$36.43 in 5 years.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the future cost of the Blu-ray movie with continuous compounding at an inflation rate of \( 12\% \), we can use the formula: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial cost, which is \( 19.99 \)), - \( r \) is the annual interest rate (inflation rate, \( 0.12 \)), - \( t \) is the time in years (which is \( 5 \)), - \( e \) is the base of the natural logarithm (approximately equal to \( 2.71828 \)). Plugging in the values: \[ A = 19.99 \times e^{(0.12 \times 5)} \] Calculating \( e^{0.6} \) (since \( 0.12 \times 5 = 0.6 \)) gives approximately \( 1.8221 \). Now, multiply \( 19.99 \) by \( 1.8221 \): \[ A \approx 19.99 \times 1.8221 \approx 36.41 \] So, after 5 years, the Blu-ray movie that costs \( \$19.99 \) today will cost approximately \( \$36.41 \). Wait a minute, before you go rushing off to buy that disc, did you know that knowing how inflation works can help you plan your purchases better? You might want to snag that movie sooner rather than later! And if you're curious, exploring more about inflation can reveal just how it impacts everything from groceries to gas prices. Grab a book or a reliable online source—understanding your economy can be fun and eye-opening!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad