Write an equation of the line passing through the points \( (4,11) \) and \( (-2,-19) \). The equation of the line is \( \square \). (Simplify your answer. Type your answer in slope-intercept form. Use integers or fractions for any numbers in the equation.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the equation of the line passing through the points \( (4,11) \) and \( (-2,-19) \), we first need to calculate the slope \( m \) using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). Substituting our points: \[ m = \frac{-19 - 11}{-2 - 4} = \frac{-30}{-6} = 5. \] Now we can use the point-slope form of the line equation: \[ y - y_1 = m(x - x_1). \] Using point \( (4,11) \): \[ y - 11 = 5(x - 4). \] Distributing the 5: \[ y - 11 = 5x - 20. \] Adding 11 to both sides gives us: \[ y = 5x - 9. \] So, the equation of the line is \( y = 5x - 9 \).