Pregunta
Find the two values that \( w \) can have if \( 3 w^{2}-75=0 \)
Ask by Weber Washington. in Spain
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The two possible values of \( w \) are 5 and -5.
Solución
To solve the equation \( 3w^2 - 75 = 0 \) for \( w \), follow these steps:
1. **Isolate the quadratic term:**
\[
3w^2 = 75
\]
2. **Divide both sides by 3:**
\[
w^2 = 25
\]
3. **Take the square root of both sides:**
\[
w = \sqrt{25} \quad \text{or} \quad w = -\sqrt{25}
\]
\[
w = 5 \quad \text{or} \quad w = -5
\]
**Therefore, the two possible values for \( w \) are 5 and -5.**
Answer: The two possible values of w are five and negative five.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve for \( w \) in the equation \( 3 w^{2}-75=0 \), we first isolate \( w^{2} \): 1. Add 75 to both sides: \( 3 w^{2} = 75 \) 2. Divide both sides by 3: \( w^{2} = 25 \) 3. Take the square root of both sides: \( w = \pm 5 \) So, the two values that \( w \) can have are \( 5 \) and \( -5 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium