Pregunta
If \( A B C D \) is a parallelogram, \( m \angle D=x^{\circ} \) and \( m \angle A=(3 x+4)^{\circ} \), fi the value of ' \( x \) '. \( \begin{array}{l}\text { a } \\ \text { a } \\ \text { b } \\ \text { c } \\ \text { c } \\ 33 \\ 55\end{array} \)
Ask by Page Spencer. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 44^\circ \)
Solución
To determine the value of \( x \) in the parallelogram \( ABCD \), let's use the properties of parallelograms:
1. **Opposite angles are equal**:
\[
\angle A = \angle C \quad \text{and} \quad \angle B = \angle D
\]
2. **Consecutive angles are supplementary**:
\[
\angle A + \angle D = 180^\circ \quad \text{and} \quad \angle B + \angle C = 180^\circ
\]
Given:
\[
m\angle D = x^\circ
\]
\[
m\angle A = (3x + 4)^\circ
\]
Using the supplementary angles property:
\[
\angle A + \angle D = 180^\circ
\]
\[
(3x + 4) + x = 180
\]
\[
4x + 4 = 180
\]
\[
4x = 176
\]
\[
x = 44^\circ
\]
**Answer:** \( x = 44^\circ \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
In a parallelogram, opposite angles are equal, and consecutive angles are supplementary. Therefore, we have \( m \angle D = m \angle B \) and \( m \angle A + m \angle D = 180^{\circ} \). Since we are given: - \( m \angle D = x^{\circ} \) - \( m \angle A = (3x + 4)^{\circ} \) We can set up the equation: \[ (3x + 4) + x = 180 \] Combining like terms gives: \[ 4x + 4 = 180 \] Subtracting 4 from both sides, we have: \[ 4x = 176 \] Dividing both sides by 4: \[ x = 44 \] Thus, the value of \( x \) is \( 44 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium