In triangle XYZ, angle X measures 45 degrees, side y is 8 units, and side z is 6 units. Use the Law of Cosines to find the measure of angle Y.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
First, let's apply the Law of Cosines, which states that \( c^2 = a^2 + b^2 - 2ab \cdot \cos(C) \). In triangle XYZ, we want to find angle Y, so we can rearrange this formula as follows: \[ y^2 = x^2 + z^2 - 2xz \cdot \cos(Y) \] Here, we know \( y = 8 \), \( z = 6 \), and angle \( X = 45^\circ \) (which we need to find out its opposite side, \( x \)). Now, using the Law of Sines to find side \( x \): \[ \frac{y}{\sin(Y)} = \frac{z}{\sin(X)} \] Substituting the values we know: \[ \frac{8}{\sin(Y)} = \frac{6}{\sin(45^\circ)} \] Since \( \sin(45^\circ) = \frac{\sqrt{2}}{2} \), rearranging gives us: \[ \sin(Y) = \frac{8 \cdot \sin(45^\circ)}{6} = \frac{8 \cdot \frac{\sqrt{2}}{2}}{6} = \frac{4\sqrt{2}}{6} = \frac{2\sqrt{2}}{3} \] Now to find angle Y, we take the arcsin: \[ Y = \arcsin\left(\frac{2\sqrt{2}}{3}\right) \] Using a calculator gives \( Y \approx 41.81^\circ \). Now, let's use this measure to find angle Z with the triangle angle sum property: \[ Z = 180^\circ - X - Y = 180^\circ - 45^\circ - 41.81^\circ \approx 93.19^\circ \] So the measure of angle Y in triangle XYZ is approximately \( 41.81^\circ \).