Pregunta
upstudy study bank question image url

\begin{tabular}{l}9 Use the information given to find g . \\ In each case g is a linear function. \\ \( \mathrm{g}(x)=m x+c \), for some numbers \( m \) and \( c \). \\ \( \begin{array}{lll}\text { a } \mathrm{f}(x)=2 x+3 & \mathrm{fg}(x)=6 x+7 \\ \text { b } \mathrm{f}(x)=5-8 x & \mathrm{fg}(x)=21-4 x \\ \text { c } \mathrm{f}(x)=\frac{7-2 x}{5} & \mathrm{fg}(x)=\frac{15-6 x}{5} \\ \text { *d } \mathrm{f}(x)=6 x & (\mathrm{fg})^{-1}(x)=\frac{x+30}{18}\end{array} \) \\ \hline 0,1941\end{tabular}

Ask by Hills Logan. in the United Arab Emirates
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The linear functions \( \mathrm{g}(x) \) for each part are: - **a.** \( \mathrm{g}(x) = 3x + 2 \) - **b.** \( \mathrm{g}(x) = \frac{1}{2}x - 2 \) - **c.** \( \mathrm{g}(x) = 3x - 4 \) - **d.** \( \mathrm{g}(x) = 3x - 5 \)

Solución

Let's solve each part step-by-step to find the linear function \( \mathrm{g}(x) = m x + c \). ### **General Approach** Given: - \( \mathrm{f}(x) \) - \( \mathrm{fg}(x) = \mathrm{f}(g(x)) \) Since \( \mathrm{g}(x) = m x + c \), we substitute \( g(x) \) into \( f \): \[ \mathrm{f}(g(x)) = \mathrm{f}(m x + c) \] Set this equal to the given \( \mathrm{fg}(x) \) and solve for \( m \) and \( c \). --- ### **a.** **Given:** \[ \mathrm{f}(x) = 2x + 3 \\ \mathrm{fg}(x) = 6x + 7 \] **Solution:** \[ \mathrm{f}(g(x)) = 2(m x + c) + 3 = 2m x + 2c + 3 \] Set equal to \( \mathrm{fg}(x) \): \[ 2m x + 2c + 3 = 6x + 7 \] **Equate coefficients:** \[ 2m = 6 \implies m = 3 \\ 2c + 3 = 7 \implies 2c = 4 \implies c = 2 \] **Result:** \[ \mathrm{g}(x) = 3x + 2 \] --- ### **b.** **Given:** \[ \mathrm{f}(x) = 5 - 8x \\ \mathrm{fg}(x) = 21 - 4x \] **Solution:** \[ \mathrm{f}(g(x)) = 5 - 8(m x + c) = 5 - 8m x - 8c \] Set equal to \( \mathrm{fg}(x) \): \[ -8m x + (5 - 8c) = -4x + 21 \] **Equate coefficients:** \[ -8m = -4 \implies m = \frac{1}{2} \\ 5 - 8c = 21 \implies -8c = 16 \implies c = -2 \] **Result:** \[ \mathrm{g}(x) = \frac{1}{2}x - 2 \] --- ### **c.** **Given:** \[ \mathrm{f}(x) = \frac{7 - 2x}{5} \\ \mathrm{fg}(x) = \frac{15 - 6x}{5} \] **Solution:** \[ \mathrm{f}(g(x)) = \frac{7 - 2(m x + c)}{5} = \frac{7 - 2m x - 2c}{5} \] Set equal to \( \mathrm{fg}(x) \): \[ \frac{7 - 2m x - 2c}{5} = \frac{15 - 6x}{5} \] **Simplify and equate coefficients:** \[ -2m x + (7 - 2c) = -6x + 15 \] \[ -2m = -6 \implies m = 3 \\ 7 - 2c = 15 \implies -2c = 8 \implies c = -4 \] **Result:** \[ \mathrm{g}(x) = 3x - 4 \] --- ### **d.** **Given:** \[ \mathrm{f}(x) = 6x \\ (\mathrm{fg})^{-1}(x) = \frac{x + 30}{18} \] **Solution:** Let \( y = \mathrm{fg}(x) = \mathrm{f}(g(x)) = 6g(x) \). Given the inverse: \[ x = (\mathrm{fg})^{-1}(y) = \frac{y + 30}{18} \] Express \( y \) in terms of \( x \): \[ x = \frac{y + 30}{18} \implies y = 18x - 30 \] Since \( y = 6g(x) \): \[ 6g(x) = 18x - 30 \implies g(x) = \frac{18x - 30}{6} = 3x - 5 \] **Result:** \[ \mathrm{g}(x) = 3x - 5 \] --- ### **Final Answers:** - **a.** \( \mathrm{g}(x) = 3x + 2 \) - **b.** \( \mathrm{g}(x) = \frac{1}{2}x - 2 \) - **c.** \( \mathrm{g}(x) = 3x - 4 \) - **d.** \( \mathrm{g}(x) = 3x - 5 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the linear function \( g(x) = mx + c \) in each case, we can utilize the relationship between functions \( f \) and \( g \), particularly focusing on their composition. For **a**: Given \( fg(x) = 6x + 7 \) and \( f(x) = 2x + 3 \), substitute \( g(x) \) into \( f \) and set it equal to \( fg(x) \). Thus, \( f(g(x)) = f(mx + c) = 2(mx + c) + 3 = 6x + 7 \). This gives us two equations: \( 2m = 6 \) (hence \( m = 3 \)) and \( 2c + 3 = 7 \) (thus \( c = 2 \)). So, \( g(x) = 3x + 2 \). For **d**: Here, we have \( f(x) = 6x \) and the inverse \( (fg)^{-1}(x) = \frac{x + 30}{18} \). From the composition \( fg(g^{-1}(x)) \), we want to find a \( g(x) \) such that \( f(g(x)) = x \). Assuming \( g(x) = mx + c \), we can find \( g \) by setting up the equations based on the inverse function format. After working through the composition, you’ll discover \( g(x) = \frac{x}{6} - 5 \). Now you've got all the pieces fitting together like a fun puzzle!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad