Pregunta
upstudy study bank question image url

Find the domain of the following vector-valued function. \( r(t)=\cos 3 t i+e^{2 \sqrt{t}} j+\frac{15}{t} k \) Select the correct choice below and fill in any answer box(es) to complete your choice. A. \( \{t: t \leq \square\} \) B. \( \{t: t \leq \square \) or \( t \geq \square\} \) C. \( \{t: \square \leq t \leq \square\} \) D. \( \{t: t>\square\} \) E. \( \{t: t \geq \square\} \) F. \( \{t: \square\square\} \)

Ask by Boyd Watkins. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The domain of the function is all real numbers greater than 0. So, the correct choice is D. \( \{t: t > 0\} \).

Solución

To determine the domain of the vector-valued function: \[ r(t) = \cos(3t) \mathbf{i} + e^{2\sqrt{t}} \mathbf{j} + \frac{15}{t} \mathbf{k}, \] we need to examine the domain of each component individually and then find their intersection. 1. **\(\cos(3t)\):** This function is defined for all real numbers \(t\). 2. **\(e^{2\sqrt{t}}\):** The expression inside the exponent, \(2\sqrt{t}\), requires that \(\sqrt{t}\) be defined. Therefore, \(t \geq 0\). 3. **\(\frac{15}{t}\):** This expression requires that \(t \neq 0\) to avoid division by zero. **Combining these conditions:** - From the second component, \(t\) must be greater than or equal to 0. - From the third component, \(t\) cannot be 0. Thus, the domain of \(r(t)\) is \(t > 0\). The correct choice is: **D. \( \{t: t > 0\} \)** Answer: D. \( \{t: t > 0\} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The function \( r(t) = \cos(3t)i + e^{2\sqrt{t}}j + \frac{15}{t}k \) has specific constraints for its domain. The term \( e^{2\sqrt{t}} \) is defined for \( t \geq 0 \), while \( \frac{15}{t} \) requires that \( t \neq 0 \) (as division by zero is not defined). Therefore, taking these into consideration, the domain of the function is \( t > 0 \). The result leads us to conclude that the answer is: D. \( \{t: t > 0\} \). When you explore vector-valued functions like this, you're often combining multiple mathematical concepts. This particular function showcases neat features such as oscillating behavior (from the cosine component) and exponential growth (from the \( e^{2\sqrt{t}} \)). It's a compact little mixture that emphasizes the beauty of mathematics! For real-world applications, vector-valued functions can be used to describe various phenomena, like the motion of a particle in space. Think of a roller coaster: as it moves through the air, its position can be defined using a vector for each point in time, making these mathematical tools quite handy in physics and engineering!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad