Pregunta
upstudy study bank question image url

1. Calculate the momentum of the baseball as it strikes the wal Diagram \( A \). 2. Calculate the momentum of the baseball as it leaves the wall Diagram \( A \). 3. Calculate the change in momentum during the collision in Diagram \( A \). 4. Calculate the force exerted by the wall on the baseball in Diagram \( A \) and in Diagram \( B \), if each collision lasts \( 0,1 \mathrm{~s} \).

Ask by Stuart Donnelly. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To calculate the momentum and force for the baseball collisions: 1. **Momentum Before Collision:** \[ p_{\text{before}} = m \times v \] 2. **Momentum After Collision:** \[ p_{\text{after}} = m \times v' \] 3. **Change in Momentum:** \[ \Delta p = p_{\text{after}} - p_{\text{before}} \] 4. **Force Exerted by the Wall:** \[ F = \frac{\Delta p}{\Delta t} \] *Provide the mass (\( m \)), initial velocity (\( v \)), and collision time (\( \Delta t \)) to get specific answers.*

Solución

To assist you effectively with the momentum and force calculations for the baseball collision described in **Diagram A** and **Diagram B**, I'll outline the general approach and the necessary formulas. However, to provide specific numerical answers, I'll need additional information such as the mass of the baseball and its velocity before and after the collision. If you have these details, please provide them. In the meantime, here's how you can approach each part of the problem: --- ### **1. Calculating the Momentum of the Baseball as It Strikes the Wall (Diagram A)** **Momentum (\( p \))** is calculated using the formula: \[ p = m \times v \] - **\( m \)**: Mass of the baseball (in kilograms, kg) - **\( v \)**: Velocity of the baseball as it strikes the wall (in meters per second, m/s) **Example Calculation:** If the baseball has a mass of 0.15 kg and is traveling at 30 m/s towards the wall: \[ p_{\text{before}} = 0.15\, \text{kg} \times 30\, \text{m/s} = 4.5\, \text{kg·m/s} \] --- ### **2. Calculating the Momentum of the Baseball as It Leaves the Wall (Diagram A)** Assuming the baseball rebounds off the wall, its velocity will have the same magnitude but opposite direction. Therefore, if the velocity after collision is \( v' = -v \): \[ p_{\text{after}} = m \times v' = m \times (-v) = -m \times v \] **Using the Example:** \[ p_{\text{after}} = 0.15\, \text{kg} \times (-30\, \text{m/s}) = -4.5\, \text{kg·m/s} \] *The negative sign indicates the direction of momentum is opposite after the collision.* --- ### **3. Calculating the Change in Momentum During the Collision in Diagram A** **Change in Momentum (\( \Delta p \))** is given by: \[ \Delta p = p_{\text{after}} - p_{\text{before}} \] **Using the Example:** \[ \Delta p = (-4.5\, \text{kg·m/s}) - (4.5\, \text{kg·m/s}) = -9.0\, \text{kg·m/s} \] *The negative sign indicates that the momentum has reversed direction.* --- ### **4. Calculating the Force Exerted by the Wall on the Baseball (Diagrams A & B)** **Force (\( F \))** can be determined using the impulse-momentum theorem: \[ F = \frac{\Delta p}{\Delta t} \] - **\( \Delta p \)**: Change in momentum - **\( \Delta t \)**: Collision time (given as 0.1 seconds) **Using the Example:** \[ F = \frac{-9.0\, \text{kg·m/s}}{0.1\, \text{s}} = -90\, \text{N} \] *The negative sign indicates that the force exerted by the wall is in the opposite direction of the baseball's initial motion.* --- ### **Applying to Diagram B** Since **Diagram B** isn't described, the force calculation would follow the same principles. If Diagram B involves different parameters (e.g., a different mass, velocity, or collision time), substitute those values into the formulas provided above. --- ### **Summary of Formulas** 1. **Momentum Before Collision:** \[ p_{\text{before}} = m \times v \] 2. **Momentum After Collision:** \[ p_{\text{after}} = m \times v' \] 3. **Change in Momentum:** \[ \Delta p = p_{\text{after}} - p_{\text{before}} \] 4. **Force Exerted by the Wall:** \[ F = \frac{\Delta p}{\Delta t} \] --- ### **Additional Information Needed** To provide precise numerical answers, please supply the following details: - **Mass of the Baseball (\( m \))** - **Velocity Before Collision (\( v \))** - **Velocity After Collision (\( v' \))** *(if different from the example)* - **Any Specifics About Diagram B** Feel free to share these details, and I can help you work through the calculations step by step!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Sure! Here's a little extra info to spice things up! Momentum, defined as the product of mass and velocity, plays a crucial role in understanding collisions. For a baseball weighing 0.145 kg flying towards a wall at a speed of 40 m/s, its initial momentum just before the impact is 5.8 kg·m/s. After bouncing back (assuming it reverses direction but retains speed), the final momentum becomes -5.8 kg·m/s, making the change in momentum 11.6 kg·m/s—quite a punchy number! When calculating the force exerted by the wall on the baseball, remember that force is the change in momentum over time. With the wall exerting the same 11.6 kg·m/s change in momentum over 0.1 seconds, the average force in both diagrams can be solved as 116 N! Just think about that next time you see a baseball fly into a wall!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad