Pregunta
upstudy study bank question image url

What are the \( x \)-intercepts of the given rational function below? \( f(x)=\frac{16 x(x+3)(x+6)}{x^{2}-36} \) \( x=0 \) and \( x=-3 \) \( x=0, x=-3 \), and \( x=-6 \) \( x=-6 \) \( x=0 \) only x

Ask by Ayala Luna. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The \( x \)-intercepts are at \( x = 0 \) and \( x = -3 \).

Solución

To determine the \( x \)-intercepts of the rational function \( f(x) = \frac{16x(x+3)(x+6)}{x^2 - 36} \), follow these steps: 1. **Find the zeros of the numerator:** The \( x \)-intercepts occur where \( f(x) = 0 \), which happens when the numerator is zero (provided the denominator is not zero at those points). \[ 16x(x + 3)(x + 6) = 0 \] - \( x = 0 \) - \( x + 3 = 0 \Rightarrow x = -3 \) - \( x + 6 = 0 \Rightarrow x = -6 \) 2. **Identify where the denominator is zero:** The function is undefined where the denominator is zero, so these points cannot be \( x \)-intercepts. \[ x^2 - 36 = 0 \Rightarrow (x - 6)(x + 6) = 0 \] - \( x = 6 \) - \( x = -6 \) 3. **Determine valid \( x \)-intercepts:** - \( x = 0 \) and \( x = -3 \) make the numerator zero and do not make the denominator zero, so they are valid \( x \)-intercepts. - \( x = -6 \) makes both the numerator and denominator zero, which means there is a hole in the graph at \( x = -6 \), not an \( x \)-intercept. **Conclusion:** The \( x \)-intercepts of the function are at \( x = 0 \) and \( x = -3 \). **Answer:** \( x=0 \) and \( x=-3 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the \( x \)-intercepts of the function \( f(x) = \frac{16 x(x+3)(x+6)}{x^{2}-36} \), you need to set the numerator equal to zero since a rational function has intercepts where the output is zero. The numerator is \( 16 x(x+3)(x+6) \). Setting it to zero gives \( x = 0 \), \( x + 3 = 0 \) (so \( x = -3 \)), and \( x + 6 = 0 \) (so \( x = -6 \)). Thus, the \( x \)-intercepts are \( x = 0 \), \( x = -3 \), and \( x = -6 \). In addition to identifying the intercepts, it's crucial to remember that the denominator must not be zero at these values to ensure they’re valid points. Since the denominator \( x^2 - 36 \) equals zero at \( x = 6 \) and \( x = -6 \), while \( x = -6 \) is an intercept, it also results in an undefined output for \( f(x) \). Therefore, only \( x = 0 \) and \( x = -3 \) are valid \( x \)-intercepts.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad