Pregunta
Factor out the greatest common factor. If the greatest common factor is 1 , just retype the polynomial. \[ 40 x^{3}+8 x \]
Ask by Pollard Harmon. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The factored form of \(40x^{3} + 8x\) is \(8x(5x^{2} + 1)\).
Solución
To factor out the greatest common factor (GCF) from the polynomial \(40x^{3} + 8x\):
1. **Find the GCF of the coefficients:**
- The coefficients are 40 and 8.
- The GCF of 40 and 8 is **8**.
2. **Find the GCF of the variable terms:**
- Both terms have at least \(x\).
- The GCF for the variable is **\(x\)**.
3. **Factor out the GCF:**
- The overall GCF is \(8x\).
- Divide each term by \(8x\):
\[
\frac{40x^{3}}{8x} = 5x^{2} \quad \text{and} \quad \frac{8x}{8x} = 1
\]
- So, the factored form is:
\[
8x(5x^{2} + 1)
\]
**Final Answer:**
\[
8x\left(5x^{2} + 1\right)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The greatest common factor (GCF) of the terms \( 40x^{3} \) and \( 8x \) is \( 8x \). If we factor \( 8x \) out from the polynomial, we get: \[ 8x(5x^{2} + 1) \]. Factoring out the GCF can make working with expressions easier, especially when simplifying or solving equations. Always start by identifying the highest common factor of the coefficients and the variables like in this example. This process allows you to break down complex expressions into simpler parts for easier manipulation!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium