Pregunta
Solve the inequality for \( v \). \[ -\frac{1}{6}+v>\frac{2}{3} \] Simplify your answer as much as possible.
Ask by Montgomery Wheeler. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( v > \frac{5}{6} \)
Solución
To solve the inequality:
\[
-\frac{1}{6} + v > \frac{2}{3}
\]
**Step 1: Isolate \( v \) by adding \(\frac{1}{6}\) to both sides of the inequality.**
\[
v > \frac{2}{3} + \frac{1}{6}
\]
**Step 2: Combine the fractions on the right side.**
First, find a common denominator for \(\frac{2}{3}\) and \(\frac{1}{6}\). The least common denominator (LCD) is 6.
\[
\frac{2}{3} = \frac{4}{6} \quad \text{(since \(2 \times 2 = 4\) and \(3 \times 2 = 6\))}
\]
Now, add the fractions:
\[
v > \frac{4}{6} + \frac{1}{6} = \frac{5}{6}
\]
**Final Solution:**
\[
v > \frac{5}{6}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To solve the inequality \( -\frac{1}{6} + v > \frac{2}{3} \), we first isolate \( v \) by adding \( \frac{1}{6} \) to both sides: \[ v > \frac{2}{3} + \frac{1}{6} \] Next, we need a common denominator to add \( \frac{2}{3} \) and \( \frac{1}{6} \). The least common multiple of 3 and 6 is 6. We can convert \( \frac{2}{3} \) to a fraction with a denominator of 6: \[ \frac{2}{3} = \frac{4}{6} \] Now, we can add the two fractions: \[ v > \frac{4}{6} + \frac{1}{6} = \frac{5}{6} \] Thus, the solution to the inequality is: \[ v > \frac{5}{6} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium