For what values of x is the following expression a real number? \( \frac{3}{\sqrt{21-3 x}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To ensure that the expression \( \frac{3}{\sqrt{21-3x}} \) is a real number, the denominator must be positive. This requirement implies two conditions: \( 21 - 3x > 0 \) and \( 21 - 3x \neq 0 \). Solving the inequality \( 21 - 3x > 0 \): 1. Rearranging gives us \( 21 > 3x \). 2. Dividing both sides by 3 gives \( 7 > x \) (or \( x < 7 \)). For \( 21 - 3x \neq 0 \): - Setting \( 21 - 3x = 0 \) leads to \( 3x = 21 \) or \( x = 7 \). Thus, \( x \) cannot equal 7. Combining these results, the expression is a real number for all \( x < 7 \), with \( x \) not equal to 7. In interval notation, this is \( (-\infty, 7) \).