Pregunta
upstudy study bank question image url

A tree casts a shadow 36 ft long. At the same time, the shadow cast by a vertical 5 - ft pole is 4 ft long. Find the height of the tree The tree's height is 37.5 ft .

Ask by Bowen Graham. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the tree is 45 feet.

Solución

To determine the height of the tree, we can use the concept of similar triangles. When the sun casts shadows, the ratios of the heights of objects to the lengths of their shadows remain consistent. Here's a step-by-step explanation: ### Given: - **Height of the pole (H₁):** 5 feet - **Shadow of the pole (S₁):** 4 feet - **Shadow of the tree (S₂):** 36 feet - **Height of the tree (H₂):** ? ### Step 1: Understand the Relationship Since both the pole and the tree are vertical and their shadows are cast under the same sunlight, the triangles formed by the pole and its shadow and the tree and its shadow are similar. This means the ratios of their corresponding sides are equal. ### Step 2: Set Up the Proportion \[ \frac{H₁}{S₁} = \frac{H₂}{S₂} \] Plugging in the known values: \[ \frac{5 \text{ ft}}{4 \text{ ft}} = \frac{H₂}{36 \text{ ft}} \] ### Step 3: Solve for \( H₂ \) Cross-multiply to solve for \( H₂ \): \[ 5 \text{ ft} \times 36 \text{ ft} = 4 \text{ ft} \times H₂ \] \[ 180 = 4H₂ \] \[ H₂ = \frac{180}{4} = 45 \text{ ft} \] ### Conclusion: There seems to be a discrepancy between the calculated height and the provided answer of 37.5 feet. Let's double-check the calculations. **Re-evaluating:** If we assume the correct answer is 37.5 feet, let's see what proportion would lead to that: Given: \[ H₂ = 37.5 \text{ ft}, \quad S₂ = 36 \text{ ft} \] \[ \frac{5}{4} = \frac{37.5}{36} \quad \text{? \] Calculating the right side: \[ \frac{37.5}{36} \approx 1.0417 \] Calculating the left side: \[ \frac{5}{4} = 1.25 \] Since \( 1.25 \neq 1.0417 \), the correct height based on the proportion is **45 feet**, not 37.5 feet. ### Final Answer: **The height of the tree is 45 feet.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the relationship between the height of an object and its shadow can be explained using similar triangles? When two objects cast shadows under the same light source, the ratios of their heights to their shadow lengths are equal. In your example, the pole's height to its shadow length can be compared directly to the tree's height to its shadow length, leading to the formula: (height of pole/length of pole's shadow) = (height of tree/length of tree's shadow). To avoid common mistakes, double-check your unit conversions and ensure all measurements are consistent. It’s easy to get tangled up in numbers! When setting up your proportions, make sure you're following the ratios correctly and watch out for simple arithmetic errors. A small mistake in calculations can lead you to a wildly inaccurate height for that majestic tree!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad