Determine \( \lim _{x \rightarrow-1^{-}} f(x) \) where
\[ f(x)=\left\{\begin{array}{ll}-5 & \text { if } x \leq-1 \\ 3 x-7 & \text { if }-11\end{array}\right. \]
If the answer in infinity, you can type in INF. If the answer is negative infinity, you
can type -INF. If the answer is does not exist, you can type in DNE. Otherwise type
in the appropriate number.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find \( \lim _{x \rightarrow-1^{-}} f(x) \), we need to evaluate the function \( f(x) \) as \( x \) approaches \(-1\) from the left. According to the definition of the function: - For \( x \leq -1 \), \( f(x) = -5 \). - For \( -1 < x \leq 1 \), \( f(x) = 3x - 7 \). - For \( x > 1 \), \( f(x) = 7x^{2} \). Since we are looking at \( x \) approaching \(-1\) from the left, we use the first piece of the function, which applies when \( x \leq -1\): \[ \lim _{x \rightarrow-1^{-}} f(x) = -5. \] Thus, the answer is \(-5\).